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A python library for calculating Rydberg electrometer response to arbitrary RF fields in steady-state or time domains.
It is a general density matrix-based master equation solver, optimized for speed to solve problems with large pa-
rameter spaces while maintaining flexibility to define novel problems. It leverages a graph-based system definition,
computationally-efficient equation “stacking” in the form of tensors, and external computational libraries such as
numpy, scipy, and ARC.

For more details, see the Rydiqule Overview.

For detailed usage examples, see the Introduction to Rydiqule Jupyter notebook.

If you use rydiqule in your work, please cite as

@article{rydiqule_2024,
author = {Miller, B. N. and Meyer, D. H. and Virtanen, T. and O Brien, C. M.␣

→˓and Cox, K. C.},
title = {RydIQule: A Graph-based paradigm for modeling Rydberg and atomic␣

→˓sensors},
journal = {Computer Physics Communications},
volume = {294},
pages = {108952},
year = {2024},
doi = {10.1016/j.cpc.2023.108952},
url = {https://doi.org/10.1016/j.cpc.2023.108952},
eprint = {https://doi.org/10.1016/j.cpc.2023.108952}

}
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2 GETTING STARTED



CHAPTER

ONE

INSTALLATION

Installation is done via pip or conda. See below for detailed instructions.

In all cases, it is highly recommended to install rydiqule in a virtual environment.

1.1 Conda installation

Installation via conda is recommended for rydiqule. It handles dependency installation as well as a virtual environment
to ensure packages do not conflict with other usages on the same system. Finally, the numpy provided by anaconda
has been compiled against optimized BLAS/LAPACK implementations, which results in much better performance
in rydiqule itself.

Assuming you have not already created a separate environment for RydIQule (recommended), run the following to
create a new environment:

(base) ~/> conda create -n rydiqule python=3.11
(base) ~/> conda activate rydiqule

RydIQule currently requires python >3.8. For a new installation, it is recommended to use the newest supported
python.

Now install via rydiqule’s anaconda channel. This channel provides rydiqule as well as its dependencies that are not
available in the default anaconda channel. If one of these dependencies is outdated, please raise an issue with the
vendoring repository.

(rydiqule) ~/> conda install -c rydiqule rydiqule

If you would like to install rydiqule in editable mode to locally modify its source, this must be done using pip. Follow
the above to install rydiqule and its dependencies, then run the following to uninstall rydiqule as provided by conda
and install the editable local repository.

(rydiqule) ~/> conda remove rydiqule --force
# following must be run from root of local repository
(rydiqule) ~/> pip install -e .

Note that editable installations require git. This can be provided by a system-wide installation or via conda in the
virtual environment (conda install git).

Note: While rydiqule is a pure python package (ie it is platform independent), its core dependency ARC is not.
If a pre-built package of ARC is not available for your platform in our anaconda channel, you will need to install
ARC via pip to build it locally before installing rydiqule. To see what architectures are supported, please see
the vendoring repository.

3
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1.2 Pure pip installation

To install normally, run:

pip install rydiqule

This command will use pip to install all necessary dependencies.

To install in an editable way (which allows edits of the source code), run the following from the root directory of the
cloned repository:

pip install -e .

Editable installtion requires git to be installed.

1.3 Confirm installation

Proper installation can be confirmed by executing the following commands in a python terminal.

>>> import rydiqule as rq
>>> rq.about()

Rydiqule
================

Rydiqule Version: 1.1.0
Installation Path: ~\Miniconda3\envs\rydiqule\lib\site-packages\rydiqule

Dependencies
================

NumPy Version: 1.24.3
SciPy Version: 1.10.1
Matplotlib Version: 3.7.1
ARC Version: 3.3.0
Python Version: 3.9.16
Python Install Path: ~\Miniconda3\envs\rydiqule
Platform Info: Windows (AMD64)
CPU Count: 12
Total System Memory: 128 GB

1.4 Updating an existing installation

Upgrading an existing installation is simple. Simply run the appropriate upgrade command for the installation method
used.

For conda installations, run the following command to upgrade rydiqule

conda upgrad rydiqule

For pip, you can use the same installation command to upgrade. Optionally, include the update flag to greedily
update dependencies as well.

pip install -U rydiqule

This command will also install any new dependencies that are required.

4 Chapter 1. Installation
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If using an editable install, simply replacing the files in the same directory is sufficient. Though it is recommended to
also run the appropriate pip update command as well to capture updated depedencies.

pip install -U -e .

1.5 Dependencies

This package requires installation of the excellent ARC package, which is used to get Rydberg atomic properties. It
also requires other standard computation dependenices, such as numpy, scipy, matplotlib, etc. These will be
automatically installed if not already present.

Note: Rydiqule’s performance does depend on these depedencies. In particular, numpy can be compiled with a
variety of backends that implements BLAS and LAPACK routines that can have different performance for different
computer architectures. When usingWindows, it is recommended to install numpy from conda, which is built against
the IntelMKL and has generally shown the best performance for Intel-based PCs.

Optional timesolver backend dependencies include the numbakit-ode and CyRK packages. Both are available via
pip. They can be installed automatically via the optional extras specification for the pip command.

pip install rydiqule[backends]

For conda installations, these dependencies must be installed manually

conda install -c rydiqule CyRK numbakit-ode

1.5. Dependencies 5
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CHAPTER

TWO

RYDIQULE OVERVIEW

Rydiqule (RYDberg sensing Interactive Quantum ModULE) is a python module that can calculate response of a
Rydberg sensor to RF fields. It uses a semi-classical approximation of the Schroedinger equation known as the
Lindblad equation to create equations of motion that describe the interaction of the sensor with optical and RF fields.

In order to use rydiqule at its basic level, you need to understand a few core elements. These elements are shown in
Fig. 2.1.

Fig. 2.1: The basic organizational structure for using Rydiqule.

A calculation needs three general components.

1. Define the system to be solved.

2. Solve the system.

3. Interpret the results to observable quantities.

7
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2.1 Define the System

A system can be defined using one of two classes: Sensor or Cell. In either case, multiple values for a parameter
can be set to produce parameter scans in the solve stage. The Sensor class defines the bare minimum of information
necessary to produce a system of equations to solve. This class allows for arbitrary definitions of the system. The
Cell class defines a physical gas of atoms for the system that in turn produces a Sensor for doing calculations. This
class relies on ARC to provide physical parameters.

2.2 Solve the System

We currently have two solvers implemented.

1. A steady state solver (solve_steady_state()) that finds the steady state density matrix of the system.
This can solve in a few different conditions:

1. Optically-thin, cold ensemble

2. Optically-thin, doppler-averaged ensemble

2. A time solver (solve_time()) that allows for fields to be defined arbitrarily in time.

Each solver takes a Sensor or Cell object and solves the system. The output is the corresponding density matrix in
the steady-state, spanning the defined parameter space, or a series of density matrices versus time in the case of the
time solver.

2.3 Interpret the Results

Once the solultions are made, we need to interpret the density matrices into observable values, typically some change
to the optical probing field. We implement a few functions to get the susceptibility, probe absorption,
and probe phase shift. Note that getting these values generally requires more information about the system
than the bare minimum required to solve them. Raw density matrix elements can also be obtained.

8 Chapter 2. Rydiqule Overview



CHAPTER

THREE

INTRODUCTION TO RYDIQULE

RydIQule, the Rydberg Interactive QuantumModule, is a python library built to simulate the interaction of Rydberg
atoms and light using a semi-classical approach. This notebook will illustrate some of its core functionality, and
demonstrate how to use the tool to model simple systems. The intent here is not to demonstrate discoveries in
physics. Rather it will use cartoonish but nontrivial examples to demonstrate how to use the module.

3.1 Design philosophy

Rydiqule was built with a few core principles in mind:

1. Rydiqule is simple - Setting and solving an atomic system can be done with just a handful of lines of code
while behaving in an intuitive way.

2. Rydiqule is fast - Under the hood, the librarymakes broad use of fast numpymatrix braodcasting and compiled
code in places that would be slowed down by native python. The result is a toolbox that can produce meaningful
results in a few minutes or less.

3. Rydiqule is flexible - Rydiqule can model a huge variety of semiclassical Rydberg atomic systems with no code
modification. For users with more particular modelling needs who wish to extend Rydiqule, the Sensor class
provides a minimal physical system that can easily be inherited and overloaded for more involved experimental
setups.

3.2 Limitations

While we have worked hard to make Rydiqule as good as possible, there are some areas that can cause issues:

1. Memory - For systems with many laser parameter values, many levels, doppler averaging in several dimensions,
or especially a combination of these, the equations of motion generated by rydiqule simply have to be very large,
often requiring more memory than is in a typical laptop or simple desktop. For very large systems, the memory
footprint may even outpace a powerful workstation. Rydiqule has built-in functionality to handle some of these
cases, but it is far from perfect and will need to be iteratated upon to be as flexible as possible.

2. Speed - While huge improvements have been made in the speed of rydiqule, there are certain situations
that can still cause some slowdowns. For longer simulations, in particular for the poorly-conditioned equations
produced with large doppler width, solving can still be slow.

3. Quantum Back-action - We treat the optical fields as static, and do not include them explicitly in the
semi-classical equations of motion. Rydiqule does not account for atom-field back-action effects. This ap-
proximation is valid for low optical depth samples, and is known to give valid results for SNR in moderate
optical depth samples. However, for quantitative analysis of quantum noise in high optical depth samples,
Rydiqule may not be accurate.

4. Device Modelling - Rydiqule is a physics solver, and does not currently have user-friendly support for
device-level modelling.

9
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3.2.1 Imports

Rydiqule is conventionally imported as rq. In addition, numpy and matplotlib are useful to have in notebooks,
so we will import them as well. They are dependencies of rydiqule, so they should already be installed if you
installed rydiqule.

#Auto-reload code for fast testing
%load_ext autoreload
%autoreload 2
%matplotlib inline

import rydiqule as rq
import numpy as np
import matplotlib.pyplot as plt

3.3 1. Creating a Sensor object

The Sensor is the core object of rydiqule. It defines an atomic system, and while you can create an solve a Hamilto-
nian manually, the Sensor takes care of the bookeeping to generate Hamiltonian and solve its associated equations
of motion. The base Sensor class is constructed with a single required argument, the basis size. Here we create a
3-level system. On its own, a Sensor contains no information about atomic structure; it is an abstraction that allows
for a high degree of manual configuration.

basis_size = 3
sensor = rq.Sensor(basis_size)

3.3.1 Defining a simple Ladder system

This demonstrates how a minimal ladder system would be defined in rydiqule. States are coupled by defining
dictionaries which have one key-value pair describing the basis states which are coupled as a tuple with two integer
elements. For applied laser fields under the rotating wave approximation, you must also specify a rabi frequency and
detuning. They are then added using the add_couplings() function with as many couplings as you’d like. All
frequency values are in megarad/s.
### Notes on detunings and rotating wave transformation
For defining detunings, the states in a coupling are always defined to go from lower to higher energy. For example,
(1,2) means state 2 is higher than 1. Any coupling with a defined detuning will be treated in the rotating
frame of the coupling.

laser_01 = {"states": (0,1), "detuning": 1, "rabi_frequency": 3}
laser_12 = {"states": (1,2), "detuning": 2, "rabi_frequency": 5}
sensor.add_couplings(laser_01, laser_12)

Once the system is defined, we can see the Hamiltonian matrix. You usually will not need to call this explicitly (it
will be called internally by a solver), but it can be useful to make sure the system is defined as expected.

print(sensor.get_hamiltonian())

[[ 0. +0.j 1.5+0.j 0. +0.j]
[ 1.5-0.j -1. +0.j 2.5+0.j]
[ 0. +0.j 2.5-0.j -3. +0.j]]

10 Chapter 3. Introduction to Rydiqule
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3.3.2 Defining a simple V scheme

We can do something similar, but with a different arrangement of couplings. We can also pass fields in the constructor
if we like

laser_01 = {"states": (0,1), "detuning": 1, "rabi_frequency": 3}
laser_02 = {"states": (0,2), "detuning": 2, "rabi_frequency": 5}
sensor_v = rq.Sensor(3, laser_01, laser_02)
print(sensor_v.get_hamiltonian())

[[ 0. +0.j 1.5+0.j 2.5+0.j]
[ 1.5-0.j -1. +0.j 0. +0.j]
[ 2.5-0.j 0. +0.j -2. +0.j]]

3.3.3 Defining a simple Lambda scheme

Here is another system, this time a lambda scheme.

laser_02 = {"states": (0,2), "detuning": 1, "rabi_frequency": 3}
laser_21 = {"states": (2,1), "detuning": 2, "rabi_frequency": 5}
sensor_lambda = rq.Sensor(3, laser_02, laser_21)

print(sensor_lambda.get_hamiltonian())

[[ 0. +0.j 0. +0.j 1.5+0.j]
[ 0. +0.j -3. +0.j 2.5-0.j]
[ 1.5-0.j 2.5+0.j -1. +0.j]]

Before we proceed further, we will make a quick note of what is happening under the hood. rydiqule is storing
all of the information we specified when we added couplings on an object called a graph from the networkx library
(https://networkx.org/). We treat the nodes of this graph as states and the edges as couplings. Internally, the graph is
called couplings. It is not important to understand networkx to use rydiqule, but let’s have a look at this Sensor.
couplings attribute to hopefully help make it a little more transparent.

print(sensor_lambda.couplings.nodes)
print(sensor_lambda.couplings.edges(data=True))

[0, 1, 2]
[(0, 2, { rabi_frequency : 3, detuning : 1, phase : 0, kvec : (0, 0, 0), label
→˓ : (0,2) }), (2, 1, { rabi_frequency : 5, detuning : 2, phase : 0, kvec : (0,
→˓ 0, 0), label : (2,1) })]

The edges contain all of the data that we have added! Again, this is not crucial, but if you are interested in how data
is stored, this is a useful demo.

3.3.4 Systems that are not fully coupled

We can also define a system in which not all states are connected explicitly by couplings. This allows us to solve
systems which, for example, have states coupled only by decoherence. This exact use case will be demonstrated later,
but we can set up the system and show the hamiltonian here.

The hamiltonaian works by treating an uncoupled states as a “second ground state”, and calculates digonal hamiltonian
elements from there. We show a 4-level system in which state 4 is coupled to state 5 via a steady state rf transition,
but to no other states. It should be noted that calling an rf transition does not change the way the system is solved
here.

Looking at the hamiltonian, we can see that the 4th term along the diagonal is 0, and the 5th term counts from there.

3.3. 1. Creating a Sensor object 11
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sensor_uncoupled = rq.Sensor(5)
laser_01 = {"states": (0,1), "detuning": 1, "rabi_frequency": 3}
laser_12 = {"states": (1,2), "detuning": 2, "rabi_frequency": 5}
rf = {"states": (3,4), "detuning": 8, "rabi_frequency": 1}
sensor_uncoupled.add_couplings(laser_01, laser_12, rf)

print(sensor_uncoupled.get_hamiltonian())

[[ 0. +0.j 1.5+0.j 0. +0.j 0. +0.j 0. +0.j]
[ 1.5-0.j -1. +0.j 2.5+0.j 0. +0.j 0. +0.j]
[ 0. +0.j 2.5-0.j -3. +0.j 0. +0.j 0. +0.j]
[ 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0.5+0.j]
[ 0. +0.j 0. +0.j 0. +0.j 0.5-0.j -8. +0.j]]

In some more complicated cases, we may want a more concrete visual reassurance that everything is defined cor-
rectly. rydiqule makes use of the atomic_energy_diagram library to help draw visual representations of
a Sensor. In the drawing below, we can see that the diagram indeed shows that states 2 and 3 are not coupled.

rq.draw_diagram(sensor_uncoupled);

12 Chapter 3. Introduction to Rydiqule
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3.4 2. Solving a Sensor in the steady-state case

So far we have just created sensor objects and shown their corresponding Hamiltonians. The most important function-
ality ofrydiqule, however, is solving their associated equations of motion automatically. Here we will demonstrate
some of the ways to solve a simple system using rydiqule.

3.4.1 Basic Solving in the steady state

If all we need steady state behavior of a particular system, it is straightforward and quick in rydiqule. By wrapping
a simple matrix differential equation solver, we can quickly get the steady state frequencies of each element of the
density matrix 𝜌 of the system. We start by re-defining the same ladder system we had at the beginning of the
notebook.

basis_size = 3
sensor = rq.Sensor(basis_size)
laser_01 = {"states": (0,1), "detuning": 1, "rabi_frequency": 3}
laser_12 = {"states": (1,2), "detuning": 2, "rabi_frequency": 5}
sensor.add_couplings(laser_01, laser_12)

Gamma matrix

However, before we solve the system, we must define the decoherence and dephasing rates of the system, which is de-
fined by the gamma_matrix. This is square matrix whose dimensionality matches that of the system Hamiltonian.
Diagonal terms of this matrix represent represent dephasing rates for each state, while off-diagonal terms represent
the rate of spontaneous population decay between states. Just like with the rest of rydiqule, the units are in Mrad/s.

This step is crucial. Without a gamma matrix (or with a matrix of all zeros), the equations of motion will be singular,
and the system will not have a well-defined steady-state solution.

The gamma matrix is a matrix where each element Γ𝑖𝑗 defines the incoherent decay rate of atomic population from
state 𝑖 to state 𝑗. Diagonal elements Γ𝑖𝑖 represent incoherend dephasing from state 𝑖. More details may be found in
Appendix A of https://arxiv.org/abs/2105.10494

gamma = np.zeros((basis_size, basis_size))
gamma[1,0] = 0.1
sensor.set_gamma_matrix(gamma)

Instead of creating the entire gammamatrix and adding all at once, you can also add individual decoherences using the
add_decoherencemethod of Sensor as well as the related, specialized helper methods add_self_broad-
ening and add_transit_broadening.

Here is the equivalent method of defining the gamma matrix for the system using these methods.

sensor.add_decoherence((1,0), 0.1)

Now, instead of showing the Hamiltonian, we can just call rydiqule.solve_steady_state() function on
sensor and get the result.

solution = rq.solve_steady_state(sensor)
print(type(solution))

<class rydiqule.sensor_solution.Solution >

As you can see, the solution itself is not an array, but rather a rydiqule.Solution object. This is a bunch-type
object that functions just like a python dictionary from which you access values as class variables instead of the ususal
d[key] syntax. This makes accessing elements a little cleaner. Here we can see that accessing with the usual
dictionary key syntax or as a class variable. As you can see below, they are the same.
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print(solution.rho)
print(solution["rho"])

[-0.17354416 -0.24474176 0.00800973 0.24029191 0.20024326 0.00667478
0. 0.22694236]

[-0.17354416 -0.24474176 0.00800973 0.24029191 0.20024326 0.00667478
0. 0.22694236]

Adjustments to the equations

So why does the solution have 8 elements? Why is it real? It represents a density matrix, which should have 𝑛2

complex-valued elements (32 = 9 in this case).

For numerical stability, rydiqule removes the ground state population equations, so the 𝜌00 term is omitted from
the solution (typically 𝜌00 >> 𝜌𝑖𝑗 for 𝑖𝑗 ̸= 00, which is the source of the numerical problems). If needed, it can be
inferred as 𝜌00 = 1 −

∑︀𝑛
𝑖=1 𝜌𝑖𝑖. Furthermore, rydiqule transforms the basis so that all values are real. Rather than

an 𝑛×𝑛 Hermitian matrix, rydiqule parameterizes the density matrix 𝜌 as 𝑛×𝑛 real values before removing the
ground state. For more details, refer to the documentation of the get_basis_transformation() function in
the sensor_utils module.

So how do we know (ideally quickly) which element of the solution corresponds to which density matrix element? The
Sensor class contains a function called basis() which does exactly this, returning a list of strings showing the
info we want. Since the density matrix is hermitian and trace 1, this array does indeed contain all of the information
of the density matrix. Note that basis() does not include 𝜌00 since the ground state is removed by the solver (see
docs)

print(sensor.basis())

[ 01_real 02_real 01_imag 11_real 12_real 02_imag 12_imag
22_real ]

Note: there are technically arguments to disable this and solve the full complex equations, but they are intended for
internal use only, and almost certainly will not work for a general system. We recommend keeping these values at
their defaults.

3.4.2 Solving for multiple values of a parameter

Getting a single result is nice, but really just a single data point. One of the simplest types of experiments you might
want to simulate is to scan, for example, over a range of detuning values and see the behavior of the system at each
value. Fortunately, rydiqule makes this type of experiment trivial. Suppose we wanted to sweep our probe laser
detuning between -10 MHz and 10 MHz. Without rydiqule we might write an explicit loop over a set of values,
modifying and solving the system at each iteration, and storing the results in a new list. In python especially, this sort
of approach has a high computational overhead. With rydiqule, We can set up the system similarly to above, this
time as a 4-level system. However, this time, instead of using a single float value for a coupling parameter, we will
define the 0 ↔ 1 coupling detunuing value as a list-like object, in our case a 1-dimensional numpy array constructed
with the linspace function.

basis_size = 4
sensor_sweep = rq.Sensor(basis_size)

detunings = 2*np.pi*np.linspace(-10,10,201) #201 values between -10 and 10 MHz
probe = {"states":(0,1), "detuning": detunings, "rabi_frequency": 3}
coupling = {"states":(1,2), "detuning": 0, "rabi_frequency": 5}
rf = {"states":(2,3), "detuning": 0, "rabi_frequency":7}

(continues on next page)
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(continued from previous page)

sensor_sweep.add_couplings(probe, coupling, rf)

sensor_sweep.add_decoherence((1,0), 0.1)
sensor_sweep.add_decoherence((2,1), 0.1)
sensor_sweep.add_decoherence((3,0), 0.1)

From here, we solve exactly as before. Rydiqule will automagically solve the system for every detuning value (very
quickly). We also show the utility function get_rho_ij() which extracts 𝜌𝑖𝑗 from the density matrix 𝜌 of any
solution (regardless of how many dimensions it is). We use it to get 𝜌01.

solution = rq.solve_steady_state(sensor_sweep)
print(f"Solution shape: {solution.rho.shape}")
absorption = rq.get_rho_ij(solution.rho,0,1).imag
print(f"Absorption_shape: {absorption.shape}")

Solution shape: (201, 15)
Absorption_shape: (201,)

We can see that there is a 15-element solution for each one of the detuning values. After we get the absorption
using get_rho_ij(), we can see that we are left with a single array with 201 elements, corresponding to to the
absorption at each value of detuning. The function doesn’t do anything special, it just is a quick way to get common
info you might want out of a solution. We can now do a quick-and-dirty plot to see what it looks like:

plt.plot(detunings/2/np.pi, absorption);
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3.4.3 Solving for multiple values of multiple parameters

If you like the simplicity of scanning an single laser detuning in rydiqule you will be even more excited to learn
that rydiqule can handle scans over multple different parameters simulataneously. We will set up the sensor as before,
with a couple of changes. We will now also scan the dephasing rate and show how the absorption changes.

basis_size = 4
sensor_sweep_2 = rq.Sensor(basis_size)

detunings = 2*np.pi*np.linspace(-10, 10, 201) #201 values between -10 and 10 MHz
probe = {"states":(0,1), "detuning": detunings, "rabi_frequency": 3, "label":"probe
→˓"}
coupling = {"states":(1,2), "detuning": 0, "rabi_frequency": 5, "label": "coupling
→˓"}
rf = {"states":(2,3), "detuning": 0, "rabi_frequency":7, "label": "rf"}

sensor_sweep_2.add_couplings(probe, coupling, rf)

gamma10 = np.linspace(0.1, 1.0, 10)
sensor_sweep_2.add_decoherence((1,0), gamma10)
sensor_sweep_2.add_decoherence((2,1), 0.1)
sensor_sweep_2.add_decoherence((3,0), 0.1)

Once again, no extra steps are required, just call solve_steady_state() as normal, and look at the shape of
the solution and the absorption and rydiqule will quickly find the solution for every combination of those 2 parameters.

solution_2 = rq.solve_steady_state(sensor_sweep_2)
print(f"Solution shape: {solution_2.rho.shape}")
absorption_2 = rq.get_rho_ij(solution_2.rho,0,1).imag
print(f"Absorption_shape: {absorption_2.shape}")

Solution shape: (201, 10, 15)
Absorption_shape: (201, 10)

How do we know which axis corresponds to the probe detuning and which is the coupling detuning? Sensor has
a method called axis_labels() which does just that, and this is where labeling our couplings comes in handy.
Note that if couplings are not labeled, the axes will default to being labeled by the states they couple. For example
["(0,1)_detuning", (1,2)_detuning"].

This function will not label the axes for the density matrix, or the time or doppler axes (discussed later), since it is
just a method of Sensor. The density matrix will always be last, time second to last (if solved in the time domain),
and the axes for n dimensions of doppler solveing will be the first n axes.

print(sensor_sweep_2.axis_labels())

[ probe_detuning , (1,0)_gamma ]

So the first axis corresponds to the probe laser detuning, and the second axis corresponds to Γ1,0. Now calling a func-
tion like np.argmin() or np.argmax() could quickly be used to optimize some value over a large parameter
space. rydiqule lets us add as many parameters as you like as a list, detunings, rabi frequencies, or dephasings. It’s
handy, but beware that the memory footprint can quickly balloon out of control when generating equations of motion
if you get too ambitious, increasing by a factor of 𝑛 when you add an axis with 𝑛 elements, especially given that many
values used in internal calculations are 128-bit complex arrays. Currently, rydiqule has internal functions to spot
this before it happens and break it into more manageable chunks if it can, but it is certainly possible to make a system
which even it cannot handle. If the solution does not fit in memory, no amount of splitting up the equations will allow
the system to be solved, and you should reconsider the size of your parameter space. Even in the above example,
rydiqule is solving 201× 10× 15 ≈ 30000 equations simultaneously.

We can plot these probe sweeps at the same time fairly simply.
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fig, ax = plt.subplots(1)

for i in range(absorption_2.shape[1]):
ax.plot(detunings/2/np.pi, absorption_2[:,i], label=f {gamma10[i]:.1f} Mrad/s )

ax.legend();

3.5 3. Solving in the time domain

Suppose you have defined a sensor, and we want to see the response of the sensor of some well-defined rf input
function. In this case, the steady-state solution above is not enough. We will set up a sensor similar to the one above,
but define the rf field differently. We will use the "time_dependence" keyword in the dictionary, and supply
with a function which takes a single argument of time in microseconds. First we will define a function below, which
turns on a static field at 𝑡 = 1𝜇𝑠.

def turn_on_field(t):
if t < 1:

return 0.0
else:

return 1.0

rydiqule treats time dependent functions as a modulation of the rabi frequency at time t. So if we define the field
we apply this function to as having a rabi frequency of 7 Mrad/s as above, the field will turn on with a rabi frequency
of 7 Mrad/s at 𝑡 = 1. Note that because we are still specifying a detuning, the field is still treated as being in the
rotating frame.

Note: Specifying time dependence means you can no longer call solve_steady_state()

basis_size = 4
sensor_time = rq.Sensor(basis_size)

(continues on next page)
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(continued from previous page)

probe = {"states":(0,1), "detuning": 2, "rabi_frequency": 3, "label":"probe"}
coupling = {"states":(1,2), "detuning": 2, "rabi_frequency": 5, "label": "coupling
→˓"}
rf = {"states":(2,3), "detuning": 0, "rabi_frequency":7, "label": "rf", "time_
→˓dependence":turn_on_field}

sensor_time.add_couplings(probe, coupling, rf)

gamma = np.zeros((basis_size, basis_size))
gamma[1:,0] = 0.1
sensor_time.set_gamma_matrix(gamma)

With everything set up, we now call the rq.solve_time() function, which behaves as you might expect. The
only difference is that you need a couple of extra arguments: - end_time, specifying the length of the simulation
time in microseconds. - num_pts, which specifies the number of points on the time interval (0, 𝑡𝑒𝑛𝑑) at which to
sample the solution evenly.

In addition, the function can take the optional argument use_nkode which is a bool that indicates whether to
use the numbakit_ode compiled differential equation solver as a backend. This can result in speedups in some
situations, particularly very long time simulation (≈> 100𝜇𝑠 or so). However, it introduces overhead with compiling
input functions that means it is not guaranteed to provide a speedup so it defaults to False. Because its speed vs
the default scipy.optimize.solve_ivp() backend is highly dependent on the particular problem, and even
version/platform to a certain extent, our recommendation is to experiment with both True and False to see what
works best for the types of problems you need to solve.

end_time = 10 #microseconds
num_pts = 100

solution_time = rq.solve_time(sensor_time, end_time, num_pts)
print(type(solution_time))

<class rydiqule.sensor_solution.Solution >

Once again we have a Solution object. However, for a time solve, this object contains two fields, rho as before,
and now also t, which are the time values at which the solution was evaluated. Let’s have a look at the shape of each
one.

print(f"Solution shape: {solution_time.rho.shape}")
print(f"t shape: {solution_time.t.shape}")

Solution shape: (100, 15)
t shape: (100,)

So the density matrix solution is an array of shape (100, 15). The 15 is obviously the flattened real density
matrix discussed above (42 − 1 = 15) and, as you might expect, the 100-element axis represents the time. So
accessing solution_time.rho[50,:] or just solution_time.rho[50] would give the density matrix
of the system at time given by the 50𝑡ℎ element of solution_time.t[50].

Now, we can look at what a particular density matrix element looks like as a function of time using matplotlib. This
will be a minimal plot of 𝜌01 vs 𝑡 just to show how you might do this for your own system. The get_rho_ij
function makes it easy, since the axis for the density matrix is always the last one for any rydiqule solution.

absorption_time = rq.get_rho_ij(solution_time.rho,0,1).imag
print(f"Shape: {absorption_time.shape}")

plt.plot(solution_time.t, absorption_time);

Shape: (100,)
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As we can see, the density matrix element is in a steady-state until the field is turned on at time 𝑡 = 1𝜇𝑠, then we
observe oscilitory behavior after the field is turned on. This is a toy model, so more detailed discussion of results will
be saved for other notebooks, but you can see that viewing this behavior is very straightforward once the system has
been solved.

3.5.1 Initial Conditions

You might reasonably ask where the steady-state that is on at 𝑡 = 0 comes from in the above example. If the
initial condition of the time solve is unspecified, rydiqule will solve the steady-state problem without any of the
time-dependent fields active and use that as the initial condition for the solver. However, if you wish to start the system
with a different initial density matrix, you can specifiy the optional init_cond argument in solve_time(). As
a note, the shape of the initial condition must match what the shape of the steady-state solution is (if you wish to use
different initial conditions for each set of parameters), or just the shape of the density matrix (to use the same initial
condition for all cases). For this system, they are the same since there is only one value for each laser parameter, but
in general they need to match.

Let us see what it looks like to set the initial condition to all the population staying in the ground state. This corresponds
to 𝜌00 = 1, and 𝜌𝑖𝑗 = 0 for 𝑖, 𝑗 ̸= 0, 0. Since we know rydiqule discards the ground state when it solves, this
corresponds to an array of all zeros.

sol_dim = sensor_time.basis_size**2 - 1
ic = np.zeros(sol_dim)
print(f"Initial Condition Shape: {ic.shape}")

Initial Condition Shape: (15,)

Notice that we also accessed the size of the basis via Sensor.basis_size. This is the expected size for a
solution, so let’s see what the solution looks like for the absorption element 𝜌01.

solution_time_from_0 = rq.solve_time(sensor_time, end_time, num_pts, init_cond=ic)
absorption_time_from_0 = rq.get_rho_ij(solution_time_from_0.rho, 0, 1).imag

plt.plot(solution_time_from_0.t, absorption_time_from_0);
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As youmight expect, we see an abrupt transient from zero, which has a small jump at 1𝜇𝑠, followed by some oscillitory
behavior that is at least similar to the plot above.

3.5.2 Multi-value Parameters in a time solve

Just like solve steady, solve_time supports coupling parameter definitions that are list-like. It works more
or less as you might expect based on the behavior of steady-state solving, but it is worth briefly discussing for the sake
of demonstrating what the solution might look like.

We start by creating a sensor identical to the one above, but with detunings defined as lists:

basis_size = 4
time_sensor_sweep = rq.Sensor(basis_size)

detunings = 2*np.pi*np.linspace(-10,10,51) #51 values between -10 and 10 MHz
probe = {"states":(0,1), "detuning": detunings, "rabi_frequency": 3, "label":"probe
→˓"}
coupling = {"states":(1,2), "detuning": detunings, "rabi_frequency": 5, "label":
→˓"coupling"}
rf = {"states":(2,3), "detuning": 0, "rabi_frequency":7, "label": "rf", "time_
→˓dependence":turn_on_field}

time_sensor_sweep.add_couplings(probe, coupling, rf)

gamma = np.zeros((basis_size, basis_size))
gamma[1:,0] = 0.1
time_sensor_sweep.set_gamma_matrix(gamma)

Then, we solve with solve_time just as above. We have reduced the number of detunings, but remember that
rydiqule is still solving about 2,500 equations here, so we should expect it to be a little slow. We can use the
%%time jupyter magic to see how slow.

%%time
end_time = 10 #microseconds

(continues on next page)
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(continued from previous page)

num_pts = 100

solution_time_sweep = rq.solve_time(time_sensor_sweep, end_time, num_pts)

CPU times: total: 39.9 s
Wall time: 20.4 s

On my machine it runs in about 7 seconds, but the time depends on several things, including how powerful your
machine is and library version/build issues we are working on. If it takes you several times longer, consider trying
with use_nkode=True. We can now inspect and try and make sense of the shape of the solution.

print(f"Shape: {solution_time_sweep.rho.shape}")

Shape: (51, 51, 100, 15)

So what does this mean? As you likely can figure out, the last axis of the solution is still the elements of the density
matrix with the expected 15 elements. Then, the second-to-last axis is the time axis. This holds true in general
for time solutions regardless of how many other axes there are. The last is always density matrix elements and the
second-to-last is always time. We can then get the other axes from a call to Sensor.axis_labels(), which
works just as above to help with the rest of the axes.

print(time_sensor_sweep.axis_labels())

[ probe_detuning , coupling_detuning ]

get_rho_ij() also works as expected for stacked time solutions:

absorption = rq.get_rho_ij(solution_time_sweep.rho, 0, 1).imag
print(absorption.shape)

(51, 51, 100)

So suppose we wanted to plot 𝜌01 vs 𝑡 for the on-resonance case. On-resonance (detuning zero) corresponds to the
middle of the detuning list defined above, element 25. We can then plot that vs time.

absorption_resonance = absorption[25, 25]
plt.plot(solution_time_sweep.t, absorption_resonance);
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3.6 4. Simulating Doppler broadening

One final key piece of functionality in rydiqule is the ability to simulate a doppler-broadened system. Internally,
this is handled by breaking a doppler velocity profile into some number of slices, then applying the corresponding
detunings for each class to the unshifted solution. This produces many sets of equations of motion, which are then
solved, and then a weighted average performed to get the doppler-broadened solution.

To set up a system with doppler broadening, we use the "kvec" keyword the couplings definition. A kvec is a
3-element spatial vector in the propagation direction of the field, with magnitude equal to the standard deviation of
the doppler velocity profile component in that direction.

basis_size = 4
sensor_doppler = rq.Sensor(basis_size)

width = 2*np.pi*0.1 #Mrad/s
k_direction = np.array([1,0,0])

detunings = 2*np.pi*np.linspace(-10,10,201) #201 values between -10 and 10 MHz
probe = {"states":(0,1), "detuning": detunings, "rabi_frequency": 3, kvec : k_
→˓direction*width}
coupling = {"states":(1,2), "detuning": 0, "rabi_frequency": 5, kvec : k_
→˓direction*width}
rf = {"states":(2,3), "detuning": 0, "rabi_frequency":7}

sensor_doppler.add_couplings(probe, coupling, rf)

gamma = np.zeros((basis_size, basis_size))
gamma[1:,0] = 0.1
sensor_doppler.set_gamma_matrix(gamma)

Again, this is a cartoon example, but it illustrates how to set up doppler broadening. In this case, we apply identical
100 Mhz doppler broadening in the x direction on both the coupling and probe lasers. With the lasers configured,
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we can now call the solve_steady_state() function to solve as before, this time with the optional argument
doppler=True.

solution_doppler = rq.solve_steady_state(sensor_doppler, doppler=True)
print(f"Solution shape: {solution_doppler.rho.shape}")

Solution shape: (201, 15)

Note that by default, the solution shape is the same as it was without doppler. rydiqule performs aweighted average
of the solutions for each doppler slice. This behavior can be disabled with the optional sum_doppler=False flag.
In this case, the wighted solution to each doppler class will be returned so they can be inspected.

absorption_doppler = rq.get_rho_ij(solution_doppler.rho,0,1).imag
print(f"Absorption_shape: {absorption_doppler.shape}")

plt.plot(detunings, absorption_doppler)

Absorption_shape: (201,)

[<matplotlib.lines.Line2D at 0x1ff4c630ee0>]

Notice that apart from the doppler broadening, this system is identical to the first one we solved over a range of
detunings. Now, with the doppler broadening, its features have been smeared out a little as expected with a doppler
distribution.

It is also worth mentioning that the same argument works identically in the solve_time() function.
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3.7 5. Cell and real atoms

So far all of the functionality shown so far have used the Sensor object, providing the barebones physics needed
to run simulations. However, in an applied setting, we would like to avoid manually filling all these parameters in
with the properties of real atoms. Thus, we have created the Cell class, which inherites Sensor. This inheritence
structure means that a Cell uses all the same functions as Sensor, in our case with some extra bells and whistles.
First, and most importantly, we can specify a physical atom to associate with the sensor. This (behind the scenes)
automatically fills in things like state lifetimes and transition frequencies.

The first argument one can specify a particluar Rydberg atom isotope via one of the following strings: [ H ,
Li6 , Li7 , Na , K39 , K40 , K41 , Rb85 , Rb87 , Cs ], correspond-

ing respecively to Hydrogen-1, Lithium-6, Lithium-7, Sodium-23, Potassium-39, Potassium-40, Potassium-41,
Rubidium-85, Rubidium-87, and Caesium-133. After the atom, the next arguments are sequence of atomic states
formatted with the Quantum numbers [n, l, j, m]. Finally, this is where experimental parameters are defined
in order to calculate system observables (such as optical path length and beam_area). If we wanted to create a Cell
with the D1 line of the Rubidium atom for example, we might do the following:

Rb_Cell = rq.Cell( Rb85 , [5, 0, 1/2, 1/2], [5, 1, 1/2, 1/2], cell_length=1e-3,␣
→˓beam_area=1e-6)

Of course, it might get tedious to add common transitions like D1 andD2, so Rydiqule adds a shorthand for calculating
them, D1_states and D2_states. These can be specified either with a principle quantum number n, or with
one of the strings we use to specify the atom (additionally, the non-isotope-specified chemical symbol can be used,
such as "Rb").

print(rq.D1_states( Rb85 ))
print(rq.D2_states(5))

([5, 0, 0.5, 0.5], [5, 1, 0.5, 0.5])
([5, 0, 0.5, 0.5], [5, 1, 1.5, 0.5])

Using this method, the cell can be created as follows:

atom = Rb85
Rb_Cell = rq.Cell(atom, *rq.D1_states(atom))

So we have created out cell, but how can we be sure what states are in the system? We can use the Cell.
states_list() function.

print(Rb_Cell.states_list())

[[5, 0, 0.5, 0.5], [5, 1, 0.5, 0.5]]

These are the 2 states we are considering in our Cell, formatted with the quantum numbers [n, l, j, m]. As
you can see, they do indeed correspond to the D1 line of Rubidium-85. But what if we wanted to add more states?
Additional states can be defined as part of the system, but must be declared when the Cell is created. Let’s add
something in a higher state 𝑛 = 20.

atom = Rb85
new_state = [20, 0, 0.5, 0.5]
Rb_Cell = rq.Cell(atom, *rq.D1_states(atom), new_state)

Importantly, while the constructor is a little, different, it is still a Sensor under the hood, we just no longer need
to specify transition frequencies and decoherences manually (although decoherences can still be added further if
desired). As such we can call all the usual sensor functions, and all the information is still stored on the couplings
attribute of Cell.

Additional self-broadening terms can be added to the decoherence matrix using the usual methods. Note that to make
a new decoherence additive rather than overriding something, give it a unique label.
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gamma_collisional = 2*np.pi*1.0 #radMHz
Rb_Cell.add_self_broadening(1, gamma_collisional, label="collisional")
print(Rb_Cell.decoherence_matrix())

[[4.11728555e-01 0.00000000e+00 0.00000000e+00]
[3.65262306e+01 6.28318531e+00 0.00000000e+00]
[5.51030221e-01 2.69737753e-02 0.00000000e+00]]

So we now have a 3-level system with the expected states, so far so good. And it even generated a gamma matrix
based on state lifetimes! From here we can add couplings as before.
Be aware that when using Cell, if detuning is not specified, the Hamiltonian will be written in the laboratory
frame and the frequency of the transition will be calculated automatically. This can lead to very large frequencies in
the Hamiltonian,

detunings = 2*np.pi*np.linspace(-10,10,201) #201 values between -10 and 10 MHz
laser_01 = {"states": (0,1), "detuning": detunings, "rabi_frequency": 3}
laser_12 = {"states": (1,2), "detuning": 2, "rabi_frequency": 5}
Rb_Cell.add_couplings(laser_01, laser_12)

To drive home that this really is just a sensor, let’s have a look at the couplings attribute.

print(Rb_Cell.couplings.nodes(data=True))
print(Rb_Cell.couplings.edges(data=True))

[(0, { qnums : [5, 0, 0.5, 0.5], energy : 0, gamma_lifetime : 0}), (1, { qnums :␣
→˓[5, 1, 0.5, 0.5], energy : 2369435838.3044744, gamma_lifetime : 36.
→˓11450209100816}), (2, { qnums : [20, 0, 0.5, 0.5], energy : 6273525803.532067,
→˓ gamma_lifetime : 0.16627544164097147})]
[(0, 0, { gamma_transit : 0.41172855461658464, label : (0,0) }), (0, 1, { rabi_
→˓frequency : 3, detuning : array([-62.83185307, -62.20353454, -61.57521601, -60.
→˓94689748,

-60.31857895, -59.69026042, -59.06194189, -58.43362336,
-57.80530483, -57.1769863 , -56.54866776, -55.92034923,
-55.2920307 , -54.66371217, -54.03539364, -53.40707511,
-52.77875658, -52.15043805, -51.52211952, -50.89380099,
-50.26548246, -49.63716393, -49.0088454 , -48.38052687,
-47.75220833, -47.1238898 , -46.49557127, -45.86725274,
-45.23893421, -44.61061568, -43.98229715, -43.35397862,
-42.72566009, -42.09734156, -41.46902303, -40.8407045 ,
-40.21238597, -39.58406744, -38.9557489 , -38.32743037,
-37.69911184, -37.07079331, -36.44247478, -35.81415625,
-35.18583772, -34.55751919, -33.92920066, -33.30088213,
-32.6725636 , -32.04424507, -31.41592654, -30.78760801,
-30.15928947, -29.53097094, -28.90265241, -28.27433388,
-27.64601535, -27.01769682, -26.38937829, -25.76105976,
-25.13274123, -24.5044227 , -23.87610417, -23.24778564,
-22.61946711, -21.99114858, -21.36283004, -20.73451151,
-20.10619298, -19.47787445, -18.84955592, -18.22123739,
-17.59291886, -16.96460033, -16.3362818 , -15.70796327,
-15.07964474, -14.45132621, -13.82300768, -13.19468915,
-12.56637061, -11.93805208, -11.30973355, -10.68141502,
-10.05309649, -9.42477796, -8.79645943, -8.1681409 ,
-7.53982237, -6.91150384, -6.28318531, -5.65486678,
-5.02654825, -4.39822972, -3.76991118, -3.14159265,
-2.51327412, -1.88495559, -1.25663706, -0.62831853,
0. , 0.62831853, 1.25663706, 1.88495559,
2.51327412, 3.14159265, 3.76991118, 4.39822972,

(continues on next page)
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(continued from previous page)

5.02654825, 5.65486678, 6.28318531, 6.91150384,
7.53982237, 8.1681409 , 8.79645943, 9.42477796,
10.05309649, 10.68141502, 11.30973355, 11.93805208,
12.56637061, 13.19468915, 13.82300768, 14.45132621,
15.07964474, 15.70796327, 16.3362818 , 16.96460033,
17.59291886, 18.22123739, 18.84955592, 19.47787445,
20.10619298, 20.73451151, 21.36283004, 21.99114858,
22.61946711, 23.24778564, 23.87610417, 24.5044227 ,
25.13274123, 25.76105976, 26.38937829, 27.01769682,
27.64601535, 28.27433388, 28.90265241, 29.53097094,
30.15928947, 30.78760801, 31.41592654, 32.04424507,
32.6725636 , 33.30088213, 33.92920066, 34.55751919,
35.18583772, 35.81415625, 36.44247478, 37.07079331,
37.69911184, 38.32743037, 38.9557489 , 39.58406744,
40.21238597, 40.8407045 , 41.46902303, 42.09734156,
42.72566009, 43.35397862, 43.98229715, 44.61061568,
45.23893421, 45.86725274, 46.49557127, 47.1238898 ,
47.75220833, 48.38052687, 49.0088454 , 49.63716393,
50.26548246, 50.89380099, 51.52211952, 52.15043805,
52.77875658, 53.40707511, 54.03539364, 54.66371217,
55.2920307 , 55.92034923, 56.54866776, 57.1769863 ,
57.80530483, 58.43362336, 59.06194189, 59.69026042,
60.31857895, 60.94689748, 61.57521601, 62.20353454,
62.83185307]), phase : 0, kvec : (0, 0, 0), dipole_moment : 1.

→˓7277475900721146, label : (0,1) }), (1, 0, { gamma_transition : 36.
→˓11450209100816, label : (1,0) , gamma_transit : 0.41172855461658464}), (1, 1,
→˓{ gamma_collisional : 6.283185307179586, label : (1,1) }), (1, 2, { rabi_
→˓frequency : 5, detuning : 2, phase : 0, kvec : (0, 0, 0), dipole_moment : -0.
→˓022325338449401693, label : (1,2) }), (2, 1, { gamma_transition : 0.
→˓026973775254682874, label : (2,1) }), (2, 0, { gamma_transit : 0.
→˓41172855461658464, label : (2,0) })]

There is a lotmore information, but the structure is identical. The only difference is that values like decoherences from
natural state lifetimes have been added automatically. If we added states without the RWA, transition frequencies
would be added automatically as well, since “absolute energy” (energy difference with the ground state) is stored on
the nodes. Given that it is the same as any other Sensor, let’s show that by solving the system as we would have
before, then we can call it a day!

In this case, we can easily call a convenience function, Solution.get_transmission_coef() to return the
transmission coefficient for the calculated solution(s).

sol = rq.solve_steady_state(Rb_Cell)
absorption_cell = sol.get_transmission_coef()
plt.plot(detunings, absorption_cell)
plt.xlabel( probe detuning (Mrad/s) )
plt.ylabel( transmission coefficient )

C:UsersDavidsrcRydiqulesrcrydiqulesensor_solution.py:223: UserWarning: At␣
→˓least one solution has optical depth greater than 1. Integrated results␣
→˓are likely invalid.
warnings.warn(( At least one solution has optical depth

Text(0, 0.5, transmission coefficient )
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This is a very minimal example introducing the concept of the Cell class as an extension of Sensor. For a more
detailed example of its use, other notebooks make heavy use of the Cell to do meaningful physics. It also illustrates
that Sensor is extensible, which actually has some very helpful implications for what you can do with rydiqule.
Sensor, or even Cell, can be extended further to model very specific experimental setups so they can be re-created
easily, specifying only the parameters that are likely to change. If you are comfortable with object-oriented program-
ming in python, the sky is the limit in terms of what you can store on the couplings graph and what you can
calculate automatically. From here, feel free to play around with other notebooks, and use rydiqule for your own
problems! We are constantly trying to improve the library, so feedback is welcome.
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rq.about()

Rydiqule
================

Rydiqule Version: 1.1.0
Installation Path: ~srcRydiqulesrcrydiqule

Dependencies
================

NumPy Version: 1.23.4
SciPy Version: 1.9.3
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Matplotlib Version: 3.6.2
ARC Version: 3.3.0
Python Version: 3.8.15
Python Install Path: C:Miniconda3envsarc
Platform Info: Windows (AMD64)
CPU Count: 4
Total System Memory: 16 GB
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CHAPTER

FOUR

CHANGELOG

4.1 v1.2.2

4.1.1 Improvements

• Now also distribute rydiqule via an anaconda channel.

4.1.2 Bug Fixes

• Fixed bug where t=0 time-dependent hamiltonians calculated in solve_steady_state were double
counted if more than one time-dependent coupling was present.

4.2 v1.2.1

4.2.1 Bug Fixes

• Fixed bug in energy level shifts where shifts overwrote detunings instead of adding.

4.3 v1.2.0

4.3.1 Improvements

• Level diagrams now use Sensor.get_rotating_frames to provide better plotting of energy ordering
of levels.

• Level diagrams now allow for optional control of plotting parameters by manually specifying ld_kw options
on nodes and edges.

• Added the ability to specify energy level shifts (additional Hamiltonian digonal terms) not accounted for by the
coupling infrastructure.
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4.3.2 Bug Fixes

• Sensor.make_real now returns correct sized const array when ground is not removed.

• Many updates to type hints to improve their accuracy.

4.3.3 Deprecations

• Remove Solution._variable_parameters in favor of property checking the observable parameters.

• Renamed Sensor.basis() and Solution.basis to Sensor.dm_basis() and Solution.
dm_basis to disambiguate physical basis from computational basis.

4.4 v1.1.0

4.4.1 Improvements

• Added the ability to specify hyperfine states in a Cell. They are distiguished by having 5 quantum numbers
[n, l, j, F, m_F].

• kappa and eta are now proprties of Cell which are calculated on the fly.

• Separated rotating frame logic from hamiltonian diagonal generation into a new function Sensor.
get_rotating_frames(). Allows for simple inspection of what rotating frame rydiqule is using in a
solve.

• Reworked the under-the-hood parameter zipping framework. This should have minimal impact on user-facing
functionality. - Hamiltonians with zipped parameters are no longer generated with a diag operation. - Zipped
parameters are now handled with a dictionary rather than a list. - Zipped parameters can now be given a
shorthand label rather than the default behavior of concatenating individual labels.

• The rearrangement of axes in a stack is now defined completely by the behavior of axis_labels().

• Added a diff_nearest boolean argument to get_snr. When true, calculates SNR based on nearest
neighbor diff. This is in contrast to the default behavior of taking the difference relative to the first element.
One case where this is necessary is when getting SNR vs LO Rabi frequency of a heterodyne measurement.

• Added the ability to label states of a sensor with the label_states method. States with a label matching
a particular pattern can be accessed with the states_with_label function.

• Timesolver now allows for returning doppler-averaged solutions without applying the doppler weight factors.
This is mostly useful for internal testing.

• solve_steady_state now treats time-dependent couplings as having their 𝑡 = 0 value. Most impor-
tantly, this affects the default behavior for timesolve initial condition generation and should limit large transient
behavior. This also allows the user to specify if time-dependent couplings should be solved with field on or off
in steady-state by altering their 𝑡 = 0 value (eg changing between sin and cos).

• Added unit tests for observables, (susceptibility, optical depth, transmission coefficient, and phase shift).

• All Observables (susceptibility, optical depth, etc) now only require a Solution object to run.

• rq.D1_states and rq.D2_states can now specify the atom via string with any isotope specification
(including none)

• get_snr now warns if any couplings have time-dependence, which are ignored.

• Zipped parameter labels may now include underscores

• about function now conceals the user’s home directory by default when printing paths

• Moved level diagram plotting to use an external library
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4.4.2 Bug Fixes

• Fixed return units of get_snr to actually return in 1s BW. Previously was returning in 1us BW.

• Sign errors when specifying detunings both in and out of the rotating frame have been fixed. All detuning signs
now follow the convention that positive = blue detuned from atomic resonance, so long as the couplings are
added correctly (ie second state of states tuple is always the higher energy one).

• Fixed potential issue in get_snr where output results could be overwritten to views of intermediate arrays

• Fixed numerical bugs in observables: phase shift, susceptibility, optical depth, transmission coef. Now unit
tested against Steck Quantum Optics notes.

• Ensure that non-dipole-allowed transitions are properly warned about in Cell.add_coupling with
ARC==3.4

4.4.3 Deprecations

• The new kappa and eta properties of Cell directly calculate from Cell properties.

• Time-solver backends (except scipy) are now optional dependencies that are no longer installed by default. To
install them, use the pip install rydiqule[backends] command.

• The uncollapsed stack shape can no longer be accessed to avoid confusion.

• Removed the ability to pass additional parameters to np.meshgrid through the get_parameter_mesh
function.

• get_snr no longer returns in units of 1us.

• Default timesolver initial conditions no longer assume time-dependent couplings have the value of
rabi_frequency. It is now rabi_frequency times the time_dependence.

• Multiple sign errors have been corrected in Sensor and Cell with regards to detunings. Results that are
asymmetric about zero detuning are likely to change. Please ensure all couplings are following correct sign
conventions for consisten results (ie second state of states tuple has higher energy).

• most of the functions in experiments.py have been moved to become methods of Solution class.

4.5 v1.0.0

4.5.1 Improvements

• Steady-state behavior for time-dependent fields (and thus initial conditions for time solves) is now computed
as a static value rather than zero (previous behavior).

• Added a flag in scipy_solve to specify how to define the right-hand function of the differential equation,
to use either loops (the newer method) or list comprehension (the older method).

• Implemented ruff linting rules as an action for new PRs to help enforce good coding practices.

• Implemented unit-testing action for new PRs to help automate catching regression bugs.
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4.5.2 Bug Fixes

• Fixed a broken uinit test that did not affect package functionality.

• Fixed issue where level diagrams don’t draw correctly if all non-zero dephasings are equal.

4.5.3 Deprecations

4.6 v1.0.0rc2

4.6.1 Improvements

• Added a copy method to solution.

• Expanded the Solution object to include more clear axis labels and the basis of the sensor used.

• Begin hosting public documentation on readthedocs.

4.6.2 Bug Fixes

• Changed an isinstance check to hasattr, fixing an occasional issue with reloading rydiqule in
jupyter notebooks.

• Fixed issue where submodules wree not installed outside of editable mode.

• Fixed a bug where additional arguments like warning suppression could not be passed to Sensor.add_couplings

4.6.3 Deprecations

4.7 v1.0.0rc1

4.7.1 Improvements

• Added a warning in cell if add_coupling is called a dipole-forbidden transition.

• The zip_parameters function can now be called on parameters of different types (e.g. detuning with rabi_fre-
quency)

• The time solver now can call ivp solvers outside its own module. This allows for more quickly using different
backend solvers for time-dependent problems.

• Implement timesolver backends based on CyRK’s cython and numba ode solvers

• Optimize scipy backend of the timesolver for smaller dimensional problems

4.7.2 Bug Fixes

• Fixed issue where solvers would save doppler axes labels and values even when they are summed over to the
solution object

• Fixed a bug where energy level diagrams broke when decochernce rates were scanned.

• Fixed issue where compiled timesolvers could not solve doppler averaged problems.

• Fixed issue where certain doppler solves could not be sliced correctly
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4.7.3 Deprecations

4.8 v0.5.0

4.8.1 Improvements

• Add isometric-population meshing option to doppler_mesh

• Allow get_rho_ij to accept a Solution object directly, in addition to solution numpy arrays

• Add get_rho_populations helper function to efficiently get the trace of density matrix solutions

• Allow beam_power or beam_waist to be scanned parameters in a Cell coupling

• Add more information to Solution objects returned by the solvers

• Allow dephasings to be scannable parameters.

• Updated the framework for scanning parameters to generate relevant lists on the fly

– Note: This changes the order of axes in a stack. Previously, the axes would be ordered based on the order
they were added to the system. They are now ordered based on python’s sort() applied to a tuple of
((low_state, high_state), parameter_name). As a result, they will be ordered first by lower state, then by
upper state, then alphabetically by parameter name (e.g. “detuning”, “rabi_frequency”) In cases where
the code was being used for simulations, this may affect cases where axes were defined specifically by
number, and these may need to be updated.

• Added a distinction between stack shapes in steady-state vs time-dependent. For example, a steady-state hamil-
tonian stack may have shape (10,1,3,3)while the time dependent portion may have shape (1,25,3,3).

• Renamed theham_slice function tomatrix_slice and allowed it to iterate over any number ofmatrices.
- Updated internals of solver functions to use this framework.

• zip_parameters function no longer enforces parameters be the same type.

4.8.2 Bug Fixes

• Fixed several issues with parameter zipping functionality producing errors when sensor methods were called
multiple times.

• Fixed issue where get_rho_ij incorrectly calculated the rho_00 element

• Allow Cell.add_coupling to accept a list of e-field values

• Fixed an bug where specifying a list of rabi_frequency in a coupling with time-dependence would
raise an error when solved

• Fixed issue with dephasing broadcasting preventing hamiltonian slices for large solves

4.8.3 Deprecations

• Removed all sensor_management functionality as too difficult to maintain generally and securely.

• Removed the internal _variable_couplings, _variable_parameters, and _variable_val-
ues attributes from sensor.
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4.9 v0.4.0

4.9.1 Improvements

• Changed the handling of decoherent transitions to be stored on graph edges rather than as a separate attribute.

– Gamma matrix is now calculated on the fly with the decoherence__matrix() method.

– Decoherent transitions are now added with with the add_decoherence() function in Sensor.

– Cell now calculates tranistion frequencies and decay rates automatically and places them on the ap-
propriate graph edges.

• Changed the Sensor.couplings attribute from a nx.Graph to an nx.DiGraph. This has multiple
advantages:

– A less vague definition of detuning convention.

– Precise definition of energy ordering: couplings now always point from lower to higher absolute energy.

– More flexibility in decoherence. Decoherent transions now point “from” one state “to” another rather than
just “between” 2 states. This fixes a limitation where gamma matrices no longer must be lower triangular.

• get_snr() function in rq.experiments now takes kappa and eta as optional arguments to allow for
running on any Sensor object. They can still be inferred from a Sensor subclass that has them as attributes
if unspecified.

• time solver now properly handles complex time dependences in the rotating wave approximation

• Added type hints to code base that can be used to static type check with mypy

• Added functions rq.calc_kappa and rq.calc_eta to properly calculate kappa and eta constants for
experimental parameters.

• Added function rq.get_OD that calculates the optical depth of a solution

• Improved accuracy of the solver memory estimates

• Increased input validation unit test coverage

• Generalized handling of transit broadening to allow for multiple repopulation states with varying branching
ratios

4.9.2 Bug Fixes

• Fixed an issue with time dependence in the probe laser

• Modified solver to allow for complex time dependence

• Fixed non-hermitian hamiltonians in time solver

• Fixed error with multiple time-dependences in time solver

• Added functionality to solver error with complex time dependences

• Modified experimental return functions (get_transmission_coef(), get_phase_shift(), and
get_susceptibility() ) to allow scanning of probe rabi frequency

• Fixed get_rho_ij so that it correctly calculates the (0,0) population element

• Fix error in test_sensor_management which fails if temporary directory does not exist.

• Tighten test_decoherences tolerances to the 2pi*100Hz level to catch errors in decoherence matrix
generation.

• Fixed issue where get_snr ignored the optical path length input parameter

• Fixed issue where calling solve_steady_state with sum_doppler=False would double memory
footprint.
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• Fixed issue where solve_steady_state could be called with weight_doppler=False and
sum_doppler=True.

4.9.3 Deprecations

• get_snr no longer allows manually specifying Sensor.eta and Sensor.kappa, these values must be
passed as args for Sensor input

• Removed unused gamma_transit argument from Sensor init

• Re-ordered argument list to Cell.add_coupling to match order of Sensor.add_coupling

• Sensor.add_fields has been fully removed and no longer works as a deprecated alias of Sensor.
add_couplings

4.10 v0.3.0

4.10.1 Improvements

• Expanded documention

• Removed restrictions on ARC and numpy versions during installation.

• Vectorized equation of motion generation to support prepending axes to a hamiltonian

• Updated the internal mechanism for sensor handling fields of various type

– Fields are now internally called couplings

– Fields are specified as either having rabi_frequency or transition_frequency, corresponding to RWA or
non-RWA fields

– Fields are specified as either having detuning or transition_frequency, corresponding to steady-state or
time-dependent fields

– Fields with specific traits can be accessed with the couplings_with() function

• Added a feature to save/load sensors/cells

• Implemented NumbaKitODE which considerably speeds up solve_time. This feature can be enabled by setting
parameter compile=True of solve_time.

• Improved logic for building diagonal terms of Hamiltonian using NetworkX graph library that allows for di-
agonal terms to be built from any set of values.

• Generalized doppler averaging to support prepended axes on hamiltonians.

• Improved time solver logic for improved modularity across doppler solving and multivalue parameters.

• Added a feature to draw level diagram

• Seamlessly generate all Hamiltonians from lists of parameters in sensor.

• Added ability to label couplings.

• Added capability to make any coupling time-dependent

• Sped up time solving considerably by simultaneously solving all equations rather than looping.

• Allow for user to specify fields by beam power, beam waist, and electric field, in the Cell framework.

• Solve functions now return a bunch-type object rather than a tuple.

• Added functionality that breaks equations into slices based on memory requirements

• Quantum numbers and absolute energies are now stored on the nodes of a Cell couplings graph

• Cell now adds decay rates and decoherences to the nodes and edges of the Cell couplings graph
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• Cell now calculates the gamma matrix in an arbitrary way, and is no longer limited to two laser, ladder schemes

• Added function to calculate sensor SNR with repect to any varied sensor coupling parameter

• Added function to return sensor parameter mesh

4.10.2 Bug Fixes

• Fixed example notebook.

• Fixed issue where doppler averaging breaks if there are uncoupled levels.

• Fixed doppler averaging so that doppler shifts are applied with signs consistent with the hamiltonian.

• Fixed a bug where doppler averaging did not properly solve separately for each doppler class.

• Fixed issue where spatial dimension of doppler averaging is not introspected correctly in the presence of
round-off errors.

4.10.3 Deprecations

• All “field” functionality are being deprecated in favor of “coupling”

• The rf_couplings, target_state, and rf_dipole_matrix arguments of solve_time()

• All functions relating to sensor.transtion_map are deprecated

• Cell now does not accept gamma_excited or gamma_Rydberg as these are always calculated or Sensor can be
used with a given gamma matrix

• Cell now does not accept gamma_doppler as Doppler broadening width is given by mutiplying the most proable
velocity and the laser k-vector

4.11 v0.2.0

Beta release. Contains very large number of backwards-incompatible changes over alpha release.

4.12 v0.1.0

Alpha release. Minimum viable product release that does basic modeling tasks slowly.
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CHAPTER

FIVE

PHYSICS DOCUMENTATION

The following pages contain white-ups that explain the theoretical basis for the many operations performed by ry-
diqule.

5.1 Equations of Motion Generation

5.1.1 Introduction

This document details a few notes about the theoretical operations taking place under the hood in the Rydiqule Mod-
elling package. In particular, we discuss the methods that Rydiqule uses to numerically solve differential equations
for density matrices.

5.1.2 Hamiltonian and Rotating Wave Approximation

For a two level atom interacting with an electric field E, the dipole interaction Hamiltonian is,

𝐻 = 𝜔 |𝑒⟩⟨𝑒| − d · E

where the Rabi frequency is defined as Ω = d · E/ℎ. The electric field is,

E = E0 cos(𝜔𝑡+ 𝜑)

=
E0

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

The dipole operator can be written [1]

d = ⟨𝑔| d |𝑒⟩ (|𝑔⟩⟨𝑒|+ |𝑒⟩⟨𝑔|)

The operator |𝑔⟩⟨𝑒| evolves at frequency 𝑒𝑖𝜔𝑡 under the bare Hamiltonian, so we expand and take the slowing evolving
terms (RWA, see [1]).

𝐻RWA = 𝜔 |𝑒⟩⟨𝑒|

− ⟨𝑔| d |𝑒⟩ · E0

2
(𝜎+𝑒−𝑖𝜔𝑡 + 𝜎−𝑒𝑖𝜔𝑡)

where 𝜎+ = |𝑔⟩⟨𝑒| and 𝜎− = |𝑒⟩⟨𝑔|
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5.1.3 Equations of Motion

The Master equation is,

�̇� = −𝑖[𝐻, 𝜌]− ℒ

We write this in summation notation,

�̇�𝑖𝑗 = −𝑖(𝐻𝑖𝑘𝜌𝑘𝑗 − 𝜌𝑖𝑘𝐻𝑘𝑗)− 𝐿𝑖𝑗

More, generally, we can re-write this equation as a matrix equation,

�̇�𝑖𝑗 = 𝑅𝑖𝑘𝜌𝑘𝑗

By re-shaping these equations, using numpy.reshape, we can convert this into a linear set of dif-
ferential equations in matrix form (see, for example Sensor._hamiltonian_term() and Sensor.
_decoherence_term() in Rydiqule). I am not going to focus on these right now. I will call the re-shaped
density vector 𝑝

�̇�𝑙 = 𝑀𝑙𝑖𝑝𝑖

This is a linear set of equations we can easily solve with linalg.solve. As a note, our reshaping procedure
produces a basis that is, for basis size b

𝑙 = 𝑏× 𝑗 + 𝑖

For example,

l ij
0 00
1 10
2 20
3 01
4 11
5 21

For the programmatic code, we need knowledge of this relationship.

5.1.4 Removing the Ground State

The density vector (matrix) is physically constrained, so that the total population is one. This constraint is not included
in the equations of motion. This leads to numerical instabilities. The best way to fix this instability is to algebraically
remove one of the equations of motion (ie the ground state). To remove the ground state, we apply the constraint

𝜌00 = 1− 𝜌𝑖𝑖.

Writing this in terms of 𝜌′ gives,

𝑝0 = 1−
∑︁
𝑥

𝑝[(𝑏+1)×𝑥]

We use this to re-write Eq. \ref{eq:master},

�̇�𝑙 = 𝑀𝑙𝑖𝑝𝑖 −𝑀𝑙0𝑝0 +𝑀𝑙0(1−
∑︁
𝑥

𝑝[(𝑏+1)×𝑥])

This is the equation we must implement to remove the ground state.
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In the code, we can apply Eq. \ref{eq:groundRemoved} and then we can simply remove the first column of𝑀𝑖𝑙. In
the code, we implement this transformation by replacing the set of equations𝑀𝑙𝑖,

𝑀𝑙𝑖𝜌𝑖 → (𝑀𝑙𝑖 +𝑀 ′
𝑙𝑖)𝜌𝑖 + 𝑐𝑙

The constant term 𝑐 is equivalent to the first column of𝑀𝑙𝑖.

𝑐𝑙 = 𝑀𝑙0

The term we need to add,𝑀 ′ is

𝑀 ′
𝑙𝑖 = −𝑀𝑙0

∑︁
𝑥

𝑝[𝑖=(𝑏+1)×𝑥]

This can be implemented as the tensor product of two vectors

𝑀 ′
𝑙𝑖 = −𝑀𝑙0 ⊗ 𝑝*

where 𝑀𝑖0 is just 𝑀 [:, 0] and 𝑝* = 𝑝[𝑗=(𝑏+1)×𝑥] is a vector of ones and zeros that is generated with list compre-
hension.

The end result is an equation where each ground state term of the density matrix 𝜌00 is replaced by the sum of all
excited states.

5.1.5 Making the Equations Real

Numerically, converting to a real set of equations is important, because it prohibits the buildup of “imaginary popula-
tions” in quantum states. In other words, some equations in the equations of motion are physically required to be real,
and some are complex. Machine rounding errors causes leakage into the imaginary parts of the populations equation,
which is unphysical. Under certain solving conditions the equations are not stable to this buildup. Converting all the
equations to real solves the issue.

The equation we want to solve (for the density vector 𝑝) is,

𝑝𝑐 = 𝑀𝑐 · 𝑝𝑐 + 𝑐𝑐

where the 𝑐 notation represents that each term is complex.

The change in basis that we implement is shown below in equation and table format,

𝜌𝑖𝑖 → 𝜌𝑖𝑖

𝜌𝑖𝑗 → 𝑅𝑒(𝜌𝑖𝑗), 𝑖 > 𝑗

𝜌𝑗𝑖 → 𝐼𝑚(𝜌𝑖𝑗), 𝑖 < 𝑗

𝑙 real 𝑖𝑗 complex 𝑖𝑗
0 𝜌00 𝜌00
1 𝜌10 Re(𝜌10)
2 𝜌20 Re(𝜌20)
3 𝜌30 Re(𝜌30)
4 𝜌01 Im(𝜌10)
5 𝜌11 𝜌11

We implement this with a transformation matrix 𝑈 that is unitary up to a scale factor,

𝑀𝑟 = 𝑈 ·𝑀𝑐 · 𝑈−1

𝑐𝑟 = 𝑈 · 𝑐𝑐
This matrix is calculated in the get_basis_transformation() helper function and is subsequently used to
transform between the complex and real bases.
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5.2 Stacking Conventions

5.2.1 Introduction

For many probelms, Rydiqule is designed to implicitly handle multiple possible values for a single parameter. For
example, sweeping over a range of detuning values is handled in Rydiqule simply by specifying the value of interest a
list or array rather than a single value. This enables a tremendous amount of flexibility in the problems that Rydiqule
can solve naturally, but there are some things worth noting about how Rydiqule specifically handles these problems,
which are outlined in this document.

5.2.2 Numpy arrays

Typically, python lists are quite slow to perform operations on since they are dynamically sized and typed. This allows
tremendous flexibility in what can be put into a list but some problems with how fast elements are accessed from that
list and operating on. Numpy arrays were created to address this limitation and Rydiqule makes extensive use of them
to make its calculations fast without losing the ease-of-use benefits of a Python interface. Fundamentally, a numpy
ndarray is a grid of numbers that has dimensionality m1 by m2 by m3 and so on. Numpy routines are written to
operate on these arrays very quickls for large numbers of dimensions.

5.2.3 Stacking

While numpy’s own way of handling arrays via matrix broadcasting is well-documented, and most of Rydiqule’s
own functions use the standard numpy conventions, there are some additional assumptions Rydiqule makes when
performing these operations that are worth outlining. Fundamentally, Rydiqule thinks about these ndarray objects
as groups of matrices, meaning that calculations are performed assuming, for example, that an array of shape (25,
3, 3) represents 25 3 × 3 matrices. This is the array that would be generated if a list of 25 values were provided
for a detuning value in a 3-level Sensor, and that Sensor’s get_hamiltonian function were called. Rydiqule
seamlessly handles all the work of generating those Hamiltonian matrices for each value, and returns a single array
object as an output. Similarly, if 2 values are specified as lists of length 25, a single arary of shape (25, 25, 3,
3) would be returned, with a different 3 × 3 Hamiltonian matrix for every combination of parameter values, for a
total of 625 Hamiltonian matrices. Rydiqule terms this array a “stack” of Hamiltonians, and the “stack shape” are
the axes preceding the actual matrix value axes (in this case (25, 25)), and is typically, denoted in Rydiqule as
*l to make clear that it could be any length of set of values depending on the problem.

Hamiltonian generations is created using this convention, and that carries through to generation of equations of mo-
tion, and any other quantities that may have a different matrix for each parameter value. A Hamiltonian stack of shape
(*l, 3, 3) will generate an equation of motion (eom) stack of shape (*l, 8, 8), with all stack demensions
remaining consistent. Rydiqule’s internals are, broadly, agnostic to exaclty what the dimensions *l represent, and
work regardless, as long as the dimensions corresponding to the actual quantities are in the expected position at the
end.
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5.2.4 Parameter Ordering

Given that any number of parameters may be defined as a list, Rydiqule needs a convention to ensure, in the final
result, the values represent what is expected and has not been turned around. It is important to Rydiqule’s design
philosophy that internal variables not by tracked opaquely, and that quantities are, to the extent possible, generated
on the fly in a predictable and reprodicuble way. This begs the questions, which axis corresponds to which value?
Suppose the coupling between states 0 and 1 is swept in detuning over 25 values, as is the coupling between states
1 and 2, the stack shape will be (25, 25), but there are some uncertainties. One might assume that the first axis
corresponds the the first laser, and the second axis corresponds to the second laser. However, this is not necessarily
obvious, and it might be the other way around without a unifying convention. Rydiqule’s solution to this problem
turns out to be simple: python’s .sort() function. Since it always orders things accordning to the same rules, there
is a predictable outcome to which axis is which. The parameters are represent by tuples: ((0,1),"detuning")
and ((1,2),"detuning"). .sort() will sort them first by the lower state of a transition, then by the upper
state, then alphabetically by the string parameter name (in this case detuning for both).

With this simple convention, Rydiqule makes these arrays consistent accross functions. One can be sure that all
values will be exaclty what is expected and line up properly for all quantities. Hamiltonians, equations of motion,
and solutions will all use the same rules. To avoid figuring this out manually for every system, the Sensor module
contains the .axis_labels() method, which returns a list of which axes are which in string form for results
interpretation. Note that the internal functions which calculate these values don’t actually care what the axis are, but
they do keep them consistent between calculations.

5.2.5 Doppler

It is worth a quick note how Rydiqule handles doppler broadening, because it leverages the same conventions around
stacking as other parameter scans, and it may be encountered and cause confusion if you use Rydiqule enough. If
doppler is accounted for in a solve, that typically is not invoked until the relevant solve function is called. Given
a case of n_doppler velocity classes in 1 dimension, a new axis will be prepended to the stack, resuling in a
n_doppler new dopple-shifted Hamiltonian matrices matrix that was previously in the stack. Typically, this is
done under the hood, and these other solutions are averaged over before a result is returned, but examining interme-
diate values may ultimately result in seeing these axes, even if they are not present in the solution that is returned.
Importantly, the solver internals are still agnostic to what these preceding doppler axes represent, giving flexibility
and allowing a single function to handle all cases. Again, this is an intermediate step that typically does not affect
how results are interpreted, it just helps to understand the internals a little better.

5.3 Observables

5.3.1 Introduction

Rydiqule can be used to calculate physical outcomes of experiments. These functions get placed into two categories,
Experiments and Observables. Observables are quantities that can be computed directly from a Solution object,
with no additional information. These functions can be found as methods of Solution. Examples of Observables
are the susceptibility, optical depth, transmission coefficient, and phase shift of a probing field. Experiments are
quantities that require more information. At the time of writing, the only example is the get_snr() function.
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5.3.2 Observable Derivation

Most of the Observables are derived from the optical/electrical susceptibility. Susceptibility is given by the optical
polarizability 𝑃+,

𝑃+ = 𝑛 ⟨𝑔| 𝑑 |𝑒⟩ 𝜌𝑒𝑔 = 𝜖0𝜒𝐸𝑡𝑜𝑡/2

This equation may be found in Steck Eq. 6.69 [1]. ⟨𝑔| 𝑑 |𝑒⟩ is the dipole matrix element, 𝜌𝑒𝑔 is the density matrix
element, 𝑛 is the atomic density, 𝜒 is susceptibility, and 𝐸𝑡𝑜𝑡 is to amplitude of the electric field. The factor of two
arises from the rotating wave approximation, such that 𝑃+ represents the atomic polarizability in the rotating frame.

5.3.3 Observable Validation

Rydiqule calculates the susceptibility using equivalent equations, but written in terms of atomic constants 𝜅 and 𝜂
(see [2] for definitions). We validate that rydiqule calculates these observable quantities in a manner consistent with
a canonical reference, namely Steck’s Quantum and Atom Optics notes [1]. The unit tests in test_experiments.py test
that rydiqule and Steck align, but assume that the density matrix element 𝜌𝑒𝑔 is correct. Validity of density matrix
elements is checked in numerous other tests.

Another more stringent test of Rydiqule is comparing the optical depth using two different methods that are both
appropriate for a 2-level atom. All losses from an ideal two-level atom arise from scattering from the excited state.
This allows one to write the scattering rate in terms of 𝜌𝑒𝑒, as is done in Steck’s Quantum and Atom Optics notes, Eq.
5.273 [1]. Another way to calculate the scattering rate is using the imaginary term of the susceptibility corresponding
to the probing field coupling. This is the method Rydiqule uses, and can be found in Eq 6.73 of [1]. This test is
implemented in test_experiments.py as the test_OD_with_steck unit test.

Running just these observable and experiment unit tests can be done by installing the pytest dependencies (see
Unit Tests), and running the following command from the package parent directory.

pytest .\tests -m experiments
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5.4 Doppler Averaging

5.4.1 Introduction

This document discusses the methods rydiqule uses to implement doppler-averaging of modelling results. The the-
oretical background is provided for completeness, but is fairly standard. Rydiqule’s implementation of this is less
obvious in order to optimize computational efficiency by fully leveraging numpy’s vectorized operations. The pri-
mary goal of this document is to clearly outline, in a single place, the underlying conventions used by rydiqule when
doppler averaging.
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Assumptions

Rydiqule currently makes implicit assumptions whenmodelling atomic systems that influence the treatment of doppler
averaging. First, rydiqule’s equations of motion are single atom, meaning that atom-atom interactions are ignored.
Second, rydiqule only solves these equations under the optically-thin assumption, meaning that input parameters do
not change. In particular, absorption of the optical fields through an extended ensemble is not considered.

Both assumptions greatly simplify doppler averaging. Specifically, these assumptions allow us to further assume that
atoms in different velocity classes do not interact, meaning that doppler averaging entails a simple weighted average
of the atomic response at different velocities by the velocity distribution.

The basic process under these assumptions is as follows:

1. Calculate the density matrix solutions to the equations of motion for a wide range of velocity classes.

2. Weight the density matrix solutions with the Maxwell-Distribution, assigning the relative atomic density per
velocity class to each solution.

3. Sum the weighted solutions.

Note that rydiqule assumes a three dimensional distribution of velocities, as is the case for a vapor.

5.4.2 Choosing Velocity Classes to Calculate

The primary influence of doppler velocities on the atomic physics is via Doppler shifts of the applied optical fields:
defined as Δ = �⃗� · �⃗�, where �⃗� = 2𝜋/𝜆 · 𝑘 is the k-vector of the the optical field and �⃗� is the velocity vector of the
atomic velocity class in question. The Doppler shift experienced by an atom is due to the sum of Doppler shifts from
each component projection of the atomic velocity relative to the k-vector of the field. In practice, the optical fields
are often configured such that there is a basis where some of the k-vector components are zero, reducing the number
of dimensions that need to be considered. In the simplest case, all optical fields are colinear, meaning all Doppler
shifts are due to velocities projected along a single axis.

Choosing which velocity classes to calculate when performing doppler averaging is a fairly complex meshing problem.
Our ultimate goal is to numerically approximate a continuous integratal in one to three dimensions using a discrete sum
approximation. For thermal vapors, where the spread of doppler velocities is large, resulting in Doppler shifts much
greater than other detunings, linewidths, or Rabi frequenices in the problem, most velocity classes only contribute
minor incoherent absorption to the final result. This allows for much coarser meshes. The difficulty lies in determining
which velocity classes, a-priori, can participate in generally narrow coherent processes. This difficulty scales with the
number of optical fields in the problem, as each new field increases the number of possible coherent resonances.

In rydiqule, we have striven to keep the specification of Doppler classes fairly flexible, with the constraint that velocity
classes along each averaged dimension are the same (ie a rectangular grid). These classes are calculated in the
doppler_classes() function, which contains options for complete user specification of all classes, as well as
some convenience distributions that can be specified via a few parameters.

5.4.3 Maxwell-Boltzmann Distribution

Given that rydiqule gives single-atom solutions, the total atomic response for a given set of parameters is directly
proportional to the total number of atoms represented by those parameters. The Maxwell-Boltzmann distribution is
used to determine the fraction of the total population that is in each velocity class.

Following the conventions used by the Wikipedia page for the Maxwell-Boltzmann Distribution, the distribution of
velocities for an ensemble of three dimensions is

𝑓
�⃗�(𝑣𝑥,𝑣𝑦,𝑣𝑧)=

(︀
𝑚

2𝜋𝑘𝑇

)︀
𝑒
− 𝑚

2𝑘𝑇

(︁
𝑣2
𝑥+𝑣2

𝑦+𝑣2
𝑧

)︁

Here, 𝑣𝑖 represents the atomic velocity component along the cartesian axes, 𝑘 is Boltzmann’s constant, 𝑇 is the
ensemble temperature in Kelvin, and𝑚 is the atomic mass in kilograms.

This distribution has a number of general properties. To begin, it is normalized such that integrating over all velocities
in 3D space will give unity. There are also a few characteristic speeds associated with this 3D distribution: the most
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probable speed 𝑣𝑝, the mean speed ⟨𝑣⟩, and the rms speed 𝑣𝑟𝑚𝑠.

𝑣𝑝 =

√︂
2𝑘𝑇

𝑚
(5.1)

⟨𝑣⟩ =
√︂

8𝑘𝑇

𝜋𝑚
(5.2)

𝑣𝑟𝑚𝑠 =

√︂
3𝑘𝑇

𝑚
(5.3)

Note that speed is defined as the magnitude of the velocity vector. Also note that all of these quantities are related to
each other by simple numerical prefactors. Finally, observe that the distribution above can be easily separated into
each cartesian component.

𝑓

�⃗�=
∏︀

𝑖
1

𝑣𝑝
√

𝜋
𝑒
−

−𝑣2
𝑖

𝑣2
𝑝

Note that the velocity distribution of each spatial component of the velocity is independently normalized. This allows
us to readily produce the appropriate weighting distribution for 1, 2 and 3 dimensional averages as needed without
having to perform redundant calculations of distributions where the density matrices to be averaged do not depend
on a particular 𝑣𝑖. This function is implemented in gaussian3d().

5.4.4 Doppler Averaging

Given the above assumptions, the doppler average of the density matrix solutions is given by the integral

𝜌𝑖𝑗 =

∫︁
𝜌𝑖𝑗(�⃗�)𝑓�⃗�𝑑3𝑣

This integral is numerically approximated via a finite sum.

𝜌𝑖𝑗 ≈
∑︁
𝑘𝑙𝑚

𝜌𝑖𝑗(𝑣𝑘, 𝑣𝑙, 𝑣𝑚)𝑓�⃗�(𝑣𝑘,𝑣𝑙,𝑣𝑚)Δ𝑣𝑘Δ𝑣𝑙Δ𝑣𝑚

In rydiqule, the weighting function 𝑓�⃗� is implemented in gaussian3d(), the volume element Δ𝑣𝑘Δ𝑣𝑙Δ𝑣𝑚 is
calculated as the product of the gradients along each axis as calculated by numpy.gradient() on the specified
velocity classes.

We again note that when all k-vectors along a particular axis are zero, 𝜌𝑖𝑗(𝑣𝑘, 𝑣𝑙, 𝑣𝑚) is constant along that axis and
that axis of the sum can be separated and assumed to sum to unity due to normalization of the weighting distribution
along each dimension.

5.4.5 Rydiqule’s Implementation

Rydiqule’s implementation of Doppler averaging is optimized to minimize duplicate calculations and fully leverage
numpy’s vectorized and broadcasting operations. The general steps are are follows:

1. Choose the doppler velocities to use for the mesh in the average.

2. Generate the Equations of Motion (EOMs) for the base zero velocity class using the machinery described in
Equations of Motion Generation.

3. Generate the part of the EOMs that are proportional to the atomic velocity components 𝑣𝑖. This is done by
generating EOMs for the system with all parameters set to zero except for the optical detunings with associated
non-zero k-vector components 𝑘𝑖.

4. Generate the complete set of EOMs for all velocity classes via a broadcasting sum of the base EOMs with
the Doppler EOMs multiplied by the velocity classes along each axis. Each non-zero spatial axis that is to be
summed over is pre-pended as an axis to the EOM tensor, as described in Stacking Conventions.

5. Solve the entire stack of EOMs.
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6. Weight the EOMs according to their velocity classes via the Maxwell-Boltzmann distribution and the discrete
velocity volume element, as described above.

7. Sum the solutions along the velocity axes.

Of particular note is the somewhat unconventional definition that Rydiqule uses for the “k-vector” of each optical
field. To begin, all quantities in the EOMs are given in units of Mrad/s, so the “k-vector” must be defined so that
multiplication by the velocity in m/s will produce these scaled units. Second, the “k-vector” defined for each coupling
is not the optical k-vector, but rather the associated vector of most probable Doppler shift.

𝐾𝑖 = 𝑘𝑖𝑣𝑝

where 𝑘𝑖 is the optical k_vector component along the 𝑖-th axis, 𝑣𝑝 is the most probable speed. The Doppler shift is
found by multiplying 𝐾𝑖 by 𝑑𝑖, the normalized velocity along the 𝑖-th axis. The velocity along the 𝑖-th axis is given
by 𝑣𝑖 = 𝑣𝑝𝑑𝑖.

This construction has two benefits. First, it allows for meshes (ie velocity classes) to be defined in a general way
relative to the distribution width 𝑣𝑝, making them easily re-usable for any velocity distribution that obeys the
Maxwell-Boltzmann distribution. Second, it allows the user the flexibility to define non-symmetric Doppler dis-
tributions, such as would be found in an atomic beam. This is done by defining the optical field “k-vectors” as
𝐾𝑖 = 𝑘𝑖𝑣𝑝𝑖

, where 𝑣𝑝𝑖
is the most probable speed along each axis. When doing this, the prefactor applied to the sum

in gaussian3d() will need to be modified for quantitative accuracy.

5.5 Time-Dependence

5.5.1 Introduction

This document discusses how rydiqule implements time-dependent couplings between states. It discusses the how to
define these couplings in terms of the relevant coupling parameters as well as some theoretical considerations when
working in the rotating wave approximation.

5.5.2 Time-Dependent Couplings

The general form for a time-dependent field is

𝐴(𝑡) cos(𝜔(𝑡)𝑡+ 𝜑(𝑡))

As it will be helpful later, we will break each time-dependent component into relevant static and time-dependent
parts. So 𝐴(𝑡) ≡ 𝐴0(1 + 𝐴𝑡(𝑡)), 𝜑(𝑡) ≡ 𝜑0 + 𝜑𝑡(𝑡), and 𝜔(𝑡) ≡ 𝜔0 + Δ + 𝜔𝑡(𝑡). Note that we have made an
explicit choice to allow for a static detuning relative to a static rotating-frame frequency 𝜔0.

5.5.3 Rydiqule Coupling Parameters for Time dependence

When defining a coupling in rydiqule, there are three parameters that define the time-dependence, all specified using
specific keys in the coupling dictionary.

1. The amplitude scale factor: rabi_frequency or e_field . A constant scalar that multiplies the
time-dependence function. Only one can be defined. If e_field is defined, the corresponding dipole
moment is used internally to convert it to a Rabi frequency. Rydiqule will automatically apply the factor of 1/2
from the RWA when building the Hamiltonian.

2. The normalized time dependence function: time_dependence . A python function that takes
a single argument, 𝑡. It is normalized such that a value of 1 corresponds to the field amplitude set by
rabi_frequency or e_field .
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3. The static detuning from the rotating frame: detuning . A constant scalar that defines a fixed detuning
relative to the rotating frame. When set, this implicitly defines the coupling in the rotating frame defined by
𝜔0 with the Rotating Wave Approximation applied. Rydiqule’s convention is that positive detunings represent
a blue detuning relative to the atomic transition (ie photon has more energy than the energy difference between
the levels).

Defining the time-dependence in this way allows us to efficiently construct the time-dependent equations of motion
(EOMs) as an expansion of EOMs proportional to each time-dependent function. If we let 𝑀𝑖 be an EOM tensor,
𝐴𝑖 the amplitude scale factor,Δ𝑖 the detuning, and 𝑓𝑖(𝑡) the time-dependent function, we can express this expansion
as

𝑀𝑡𝑜𝑡 = 𝑀0(Δ𝑖, ...) +
∑︁

𝑀𝑖(𝐴𝑖) · 𝑓𝑖(𝑡)

Note that 𝑀0 represents the steady-state EOMs which includes the static detunings for all of the couplings,
time-dependent or not.

5.5.4 Example Time-Dependencies

We now provide a few examples of how to write a time-dependent field coupling into the parameters exposed by
rydiqule.

RF Heterodyne

In this situation, we want to couple a single transition with two fields with a small detuning between them. One field
is the local oscillator (LO), which has constant amplitude, frequency, and phase. It is detuned from the transition
resonance by Δ𝐿𝑂. The second field is the signal (S), and is detuned from the LO by a frequency 𝛿𝑆 . It’s amplitude
is fixed and smaller than the LO amplitude. The phase and frequency of this field is fixed.

One can write this total field as

𝐸𝑡𝑜𝑡 = 𝐸𝐿𝑂 + 𝐸𝑆 = 𝐸𝐿𝑂 cos((𝜔0 +Δ𝐿𝑂)𝑡) + 𝐸𝑆 cos((𝜔0 +Δ𝐿𝑂 + 𝛿𝑆)𝑡)

To convert to rydiqule parameters, we first move to the rotating frame defined by the transition frequency 𝜔0. We
then separate the constant amplitude prefactor from the normalized time-dependence.

𝐸𝑡𝑜𝑡−𝑟𝑤𝑎 =
𝐸𝐿𝑂

2

(︂
1 +

𝐸𝑆

𝐸𝐿𝑂
𝑒𝑖𝛿𝑆𝑡

)︂
Note that the rotating wave approximation has discarded the counter-rotating term from cos, leaving the single com-
plex exponential in the time-dependence.

The three rydiqule parameters are now defined as

1. Constant amplitude: 𝐸𝐿𝑂

2. Time-dependence:
(︁
1 + 𝐸𝑆

𝐸𝐿𝑂
𝑒𝑖𝛿𝑆𝑡

)︁
3. Detuning: Δ𝐿𝑂

The constant amplitude does not include the factor of 2 from the rotating wave approximation because rydiqule will
automatically add it if the detuning coupling parameter is provided. Note that the detuning parameter corresponds
to the diagonal term of the resulting RWA hamiltonian.
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Non-Rotating Frame

In some instances, one may wish to solve for a time-dependent coupling outside the rotating frame approximation.
This situation is signaled to rydiqule by not defining the detuning parameter of the relevant coupling.

As an example, we can consider the rf heterodyne field coupling in Eq. \ref{eq:heterodyne_field}. The rydiqule
parameters without the rotating wave approximation would be

1. Constant amplitude: 𝐸𝐿𝑂

2. Time-dependence: cos((𝜔0 +Δ𝐿𝑂)𝑡) +
𝐸𝐿𝑂

𝐸𝑆
cos((𝜔0 +Δ𝐿𝑂 + 𝛿𝑆)𝑡)

3. Detuning: undefined

Note that in this case, a factor of 1/2 will not be applied by rydiqule to the amplitude.

Frequency Sweep in the Rotating-Frame

In this situation, we want to work in a rotating frame which will remove the bulk of the field’s frequency, relaxing
the time solver’s timesteps. We assume a fixed amplitude and a linear frequency sweep through resonance at a rate 𝑏,
starting at detuning −𝛿0.

This field coupling is written as

Ω(𝑡) = Ω0 cos(𝜑(𝑡))

where

𝜑(𝑡) =

∫︁ 𝑡

0

𝜔(𝜏)𝑑𝜏

and 𝜔(𝑡) = 𝜔0 + 𝑏𝑡− 𝛿0.

The field coupling with the integration performed is

Ω(𝑡) = Ω0 cos((𝜔0 − 𝛿0)𝑡+
𝑏𝑡2

2
)

Moving to the rotating frame and re-writing to match rydiqule’s inputs we have

Ω𝑟𝑤𝑎(𝑡) =
Ω0

2
𝑒

𝑖𝑏𝑡2

2

The three rydiqule parameters are now defined as

1. Constant amplitude: Ω0

2. Time-dependence: 𝑒 𝑖𝑏𝑡2

2

3. Detuning: −𝛿0

Static Phase Offsets

When doing time-dependent calculations of multi-photon coherent effects to study steady-state spectra (eg studying
response to frequency modulations), it can be helpful to set random static phase offsets to the couplings to help the
solution converge to steady-state faster. If this isn’t done, you often observe are large transient at 𝑡 = 0 due to all
fields being approximately coherent even if their frequencies are different.

The field coupling is

Ω(𝑡) = Ω0 cos((𝜔0 +Δ)𝑡+ 𝜑0)

This phase offset can be moved to the static amplitude scaling factor, reducing the computational complexity of the
time-dependence.

Ω𝑟𝑤𝑎(𝑡) =
Ω0

2
𝑒𝑖𝜑0

The three rydiqule parameters are now defined as
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1. Constant amplitude: Ω0𝑒
𝑖𝜑0

2. Time-dependence: undefined

3. Detuning: Δ

Note that this coupling does not have time-dependence and would be solved as a steady-state field by not setting the
time_dependence coupling parameter.

Closed-Loops

If your system involves a closed-loop of couplings (ie there is a circular coupling path), you have to track the overall
phase of the circular path when moving to a rotating frame. In particular, a time-dependent phase will accumulate in
the loop if any of the couplings in the loop have non-zero detuning from atomic resonance.

Modelling a diamond scheme in a four-level atom would have the following four couplings.

Ω(𝑎)(𝑡) = Ω𝑎 cos((𝜔1 + 𝛿𝑎)𝑡+ 𝜑𝑎) (5.4)

Ω(𝑏)(𝑡) = Ω𝑏 cos((𝜔2 + 𝛿𝑏)𝑡+ 𝜑𝑏)(5.5)

Ω(𝑐)(𝑡) = Ω𝑐 cos((𝜔3 + 𝛿𝑐)𝑡+ 𝜑𝑐)(5.6)

Ω(𝑑)(𝑡) = Ω𝑑 cos((𝜔4 + 𝛿𝑑)𝑡+ 𝜑𝑑)(5.7)

The atomic transition frequenicies obey the relationship 𝜔1 + 𝜔2 − 𝜔3 − 𝜔4 = 0, with fields 1 and 4 coupling to the
ground state, and fields 2 and 3 coupling the highest excited state. Note that the detunings for each field are defined
such that a positive value corresponds to a blue detuning from atomic resonance. The optical frequencies obey the
relationship 𝜔𝑎 + 𝜔𝑏 − 𝜔𝑐 − 𝜔𝑑 −Δ = 0, whereΔ = 𝛿𝑎 + 𝛿𝑏 − 𝛿𝑐 − 𝛿𝑑.

Moving to a rotating frame is a non-unique transformation (ie there are many equally valid choices). This means that
the time-dependent phase due to non-zero detuning of any field could be accounted for on any of the field couplings
in a self-consistent way. However, rydiqule makes an explicit choice for the rotating frame via its shortest path
determination of the graph for each state. Accurate modelling requires writing the couplings in the specific rotating
frame chosen by rydiqule.

The basic choice made by rydiqule is to use the shortest path from the lowest index node of the connected sub-graph
(typically 0). If there are multiple shortest paths (ie multiple paths with the same shortest length), only one is returned.
Typically it is the first equal-length path traversed by the algorithm. Which one that depends on internals of python
(namely dictionary ordering).

Because of these choices, rydiqule will choose multiple branching paths from the ground state in a closed-loop. In
order to correctly define the rotating frame, you must ensure that your couplings are defined in rydiqule such that each
path is relative to the ground state. An example can demonstrate this subtlety.

In rydiqule code, the above couplings would be defined as (ignoring time dependence)

fa = { states :(0,1), detuning :delta_a, rabi_frequency :Omega_a, phase :phi_a}
fb = { states :(1,2), detuning :delta_b, rabi_frequency :Omega_b, phase :phi_b}
fc = { states :(3,2), detuning :delta_c, rabi_frequency :Omega_c, phase :phi_c}
fd = { states :(0,3), detuning :delta_d, rabi_frequency :Omega_d, phase :phi_d}

s = rq.Sensor(4)
s.add_couplings(fa,fb,fc,fd)

Note that we have set the fc coupling with reversed ordering to indicate state 2 has higher energy than state 3. We
can use rydiqule to tell us which rotating frames will be chosen by calling get_rotating_frames(). This will
return

{<networkx.classes.digraph.DiGraph at 0x1ef491e1910>: {0: [0],
1: [0, 1],
3: [0, 3],
2: [0, 1, 2]}}
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Note that state 3 has been defined directly from ground, instead of the path [0, 1, 2, -3] as is often done
when solving this problem on paper. As a result, we have defined the f4 coupling to be (0,3) instead of (3,0)
to match this convention. This is important since all states need to rotate in a frame that starts from the same state.
If we instead defined coupling f4 with states :(3,0), the resulting path for state 3 is [0, -3] indicating
state 3 is lower in energy than state 0 because all paths must start at 0. Put another way, all coupling states
tuples are assumed to be ordered such that the second state has higher energy than the first.

Rotating the above couplings into rydiqule’s default frame is accomplished using the unitary rotation operator⎛⎜⎜⎝
1 0 0 0
0 𝑒−𝑖𝑡𝜔𝑎 0 0
0 0 𝑒−𝑖𝑡(𝜔𝑎+𝜔𝑏) 0
0 0 0 𝑒−𝑖𝑡𝜔𝑑

⎞⎟⎟⎠
The couplings now in the rotating wave approximation are

Ω(𝑎)
𝑟𝑤𝑎(𝑡) =

Ω𝑎

2
𝑒𝑖𝜑𝑎 (5.8)

Ω(𝑏)
𝑟𝑤𝑎(𝑡) =

Ω𝑏

2
𝑒𝑖𝜑𝑏(5.9)

Ω(𝑐)
𝑟𝑤𝑎(𝑡) =

Ω𝑐

2
𝑒−𝑖𝜑𝑐𝑒𝑖(𝛿𝑎+𝛿𝑏−𝛿𝑐−𝛿𝑑)𝑡(5.10)

Ω(𝑑)
𝑟𝑤𝑎(𝑡) =

Ω𝑑

2
𝑒𝑖𝜑𝑑(5.11)

Note that only coupling f3 has any time-dependence for these CW fields. Obviously, if any of the fields are not
CW, that extra time-dependence will need to be accounted for as described in the above examples in addition to the
time-dependence described here.

The rydiqule coupling parameters would be written as (letting 𝑖 = [𝑎, 𝑏, 𝑐, 𝑑])

1. Constant amplitude: Ω𝑖𝑒
𝑖𝜑𝑖 with f3 differing by a sign Ω𝑑𝑒

−𝑖𝜑𝑐

2. Time-dependence (coupling f3 only): 𝑒𝑖(𝛿𝑎+𝛿𝑏−𝛿𝑐−𝛿𝑑)𝑡

3. Detuning: 𝛿𝑖 with 𝛿𝑐 not actually being inserted on the diagonal of the hamiltonian
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CHAPTER

SIX

API DOCUMENATION

rydiqule Parent computational module.

6.1 rydiqule

Parent computational module.

Modules

rydiqule.atom_utils Utilities for interacting with atomic parameters and
ARC.

rydiqule.cell Physical Cell objects for use in solvers.
rydiqule.doppler_utils Utilities for implementing Doppler averaging
rydiqule.experiments Standard methods for converting results to physical val-

ues.
rydiqule.rydiqule_utils General rydiqule package utilities
rydiqule.sensor Sensor objects that control solvers.
rydiqule.sensor_solution Bunch-like object use to store aspects of a solution

when calling rydiule.solve() Adds essential keys with
"None" entries

rydiqule.sensor_utils Utilities used by the Sensor classes.
rydiqule.slicing
rydiqule.solvers Steady-state solvers of the Optical Bloch Equations.
rydiqule.stack_solvers
rydiqule.timesolvers Solvers for time domain analysis with an arbitrary RF

field

6.1.1 rydiqule.atom_utils

Utilities for interacting with atomic parameters and ARC.
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Module Attributes

ATOMS Alkali atoms defined by ARC that can be used with
Cell.

rydiqule.atom_utils.ATOMS

rydiqule.atom_utils.ATOMS = { Cs : <class arc.alkali_atom_data.Caesium >,
H : <class arc.alkali_atom_data.Hydrogen >, K39 : <class
arc.alkali_atom_data.Potassium39 >, K40 : <class
arc.alkali_atom_data.Potassium40 >, K41 : <class
arc.alkali_atom_data.Potassium41 >, Li6 : <class
arc.alkali_atom_data.Lithium6 >, Li7 : <class
arc.alkali_atom_data.Lithium7 >, Na : <class
arc.alkali_atom_data.Sodium >, Rb85 : <class
arc.alkali_atom_data.Rubidium85 >, Rb87 : <class
arc.alkali_atom_data.Rubidium87 >}

Alkali atoms defined by ARC that can be used with Cell.

Functions

D1_states(n) Retrieve the quantum numbers for the states corre-
sponding to the D1 line for a given Rydberg atom or
principle quantum number.

D2_states(n) Retrieve the quantum numbers for the states corre-
sponding to the D2 line for a given Rydberg atom or
principle quantum number.

calc_eta(omega, dipole_moment, beam_area) Calculates the eta constant needed from some experi-
ment calculations

calc_kappa(omega, dipole_moment, density) Calculates the kappa constant needed for observable
calculations.

rydiqule.atom_utils.D1_states

rydiqule.atom_utils.D1_states(n: Union[int, str])

Retrieve the quantum numbers for the states corresponding to the D1 line for a given Rydberg atom or principle
quantum number.

Parameters
n (int or str) – Either the string flag of the atom or the principle quantum number n of
an atom. If string, must begin with [‘H’, ‘Li’, ‘Na’, ‘K’, ‘Rb’, ‘Cs’].

Returns

• list – Quantum numbers [n, l, j, m] of the atoms ground state.

• list – Quantum numbers [n, l, j, m] of the first excited state corresponding to the D1 line
of the Rydberg atom.
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rydiqule.atom_utils.D2_states

rydiqule.atom_utils.D2_states(n: Union[int, str])

Retrieve the quantum numbers for the states corresponding to the D2 line for a given Rydberg atom or principle
quantum number.

Parameters
n (int or str) – Either the string flag of the atom or the principle quantum number n of
an atom. If string, must begin with [‘H’, ‘Li’, ‘Na’, ‘K’, ‘Rb’, ‘Cs’].

Returns

• list – Quantum numbers [n, l, j, m] of the atoms ground state.

• list – Quantum numbers [n, l, j, m] of the first excited state corresponding to the D2 line
of the Rydberg atom.

rydiqule.atom_utils.calc_eta

rydiqule.atom_utils.calc_eta(omega: float, dipole_moment: float, beam_area: float)→ float
Calculates the eta constant needed from some experiment calculations

The value is computed with the following formula Eq. 7 of Meyer et. al. PRA 104, 043103 (2021)

𝜂 =

√︃
𝜔𝜇2

2𝑐𝜖0ℎ𝐴

Where 𝜔 is the probing frequency, 𝜇 is the dipole moment, 𝐴 is the beam area, 𝑐 is the speed of light, 𝜖0 is the
dielectric constant, andℎ is the reduced Plank constant.

Parameters

• omega (float) – The atomic transition frequency, in rad/s

• dipole_moment (float) – The atomic transition dipole moment, in C*m

• beam_area (float) – The cross-sectional area of the beam, in m^2

Returns
The value of eta, in root(Hz)

Return type
float

rydiqule.atom_utils.calc_kappa

rydiqule.atom_utils.calc_kappa(omega: float, dipole_moment: float, density: float)→ float
Calculates the kappa constant needed for observable calculations.

The value is computed with the following formula Eq. 5 of Meyer et. al. PRA 104, 043103 (2021)

𝜅 =
𝜔𝑛𝜇2

2𝑐𝜖0ℎ

Where 𝜔 is the probing frequency, 𝜇 is the dipole moment, 𝑛 is atomic cloud density, 𝑐 is the speed of light,
𝜖0 is the dielectric constant, andℎ is the reduced Plank constant.

Parameters

• omega (float) – Atomic transition frequency, in rad/s

• dipole_moment (float) – Dipole moment of the atomic transition, in C*m

• density (float) – The atomic number density, in m^(-3)
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Returns
The value of kappa, in (rad/s)/m

Return type
float

6.1.2 rydiqule.cell

Physical Cell objects for use in solvers.

Classes

Cell(atom_flag, *atomic_states[, ...]) Subclass of Sensor that creates a Sensor with addi-
tional physical properties corresponding to a specific
Rydberg atom.

rydiqule.cell.Cell

class rydiqule.cell.Cell(atom_flag: Literal['H', 'Li6', 'Li7', 'Na', 'K39', 'K40', 'K41', 'Rb85', 'Rb87',
'Cs'], *atomic_states: Sequence, cell_length: float = 0.001, gamma_transit:
Optional[float] = None, beam_area: float = 1e-06, beam_diam:
Optional[float] = None, temp: float = 300.0, probe_tuple: tuple = (0, 1))

Bases: Sensor

Subclass of Sensor that creates a Sensor with additional physical properties corresponding to a specific Ry-
dberg atom.

In addition to the core functionality of ~.Sensor, this class allows for labelling of states with quantum
numbers, calculating of state lifetimes and decoherences and tracking of of some physical laser parameters. A
key distictinction between a Cell and a Sensor is that a cell supports (and requires) and absolute ordering
of energy between states, which allows for implicit calculation of decay rates an transition frequencies.

__init__(atom_flag: Literal['H', 'Li6', 'Li7', 'Na', 'K39', 'K40', 'K41', 'Rb85', 'Rb87', 'Cs'], *atomic_states:
Sequence, cell_length: float = 0.001, gamma_transit: Optional[float] = None, beam_area: float
= 1e-06, beam_diam: Optional[float] = None, temp: float = 300.0, probe_tuple: tuple = (0, 1))
→ None

Initialize the Rydberg cell from the given parameters.

Parameters

• atom_flag (str) – Which atom is used in the cell for calculating physical properties
with ARC Rydberg. One of [‘H’, ‘Li6’, ‘Li7’, ‘Na’, ‘K39’, ‘K40’, ‘K41’, ‘Rb85’, ‘Rb87’,
‘Cs’].

• atomic_states (list[list]) – List of states to be added to the cell. Each state
is an iterable whose elements are each a list of the form [n, l, j, m], represnting the
Rydberg atomic quantum numbers of the state. At least two states must be added so that
the system is nontrivial. The number of states will determine the basis size of the system.
Note that the first state in the list is assumed to be a meta-stable ground.

• cell_length (float) – Length of the atomic vapor in meters.

• gamma_transit (float, optional) – Decoherence due to atom transit through
the optical beams. Specified in units of Mrad/s. If None, will calculate based on value
of beam_area. See add_transit_broadening() for details on how transit
broadening is treated. Default is None.

• beam_area (float, optional) – Area of probing field cross-section in m^2.
Used to calculate kappa and gamma_transit. Default is 1e-6.
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• beam_diam (float, optonal) – Diameter of the probing field cross section inme-
ters. Used to calculate gamma_transit. If None, it is calculated from beam_area
assuming the beam cross-section is a circle. Default is None.

• temp (float, optional) – Temperature of the gas in Kelvin. Used in calculations
of enery level lifetime. Default is 300 K.

Raises

• ValueError – If at least two atomic states are not provided.

• ValueError – If atom_flag is not one of ARC’s supported alkali atoms.

Methods

__init__(atom_flag, *atomic_states[, ...]) Initialize the Rydberg cell from the given param-
eters.

add_coupling(states[, rabi_frequency, ...]) Overload of add_coupling() which allows for
different specification of coupling fields which are
more reflective of real experimental setups.

add_couplings(*couplings, **extra_kwargs) Add any number of couplings between pairs of
states.

add_decoherence(states, gamma[, label]) Add decoherent coupling to the graph between two
states.

add_energy_shift(state, shift) Add an energy shift to a state.
add_energy_shifts(shifts) Add multiple energy shifts to different nodes.
add_self_broadening(node, gamma[, la-
bel])

Specify self-broadening (such as collisional broad-
ening) of a level.

add_states() Deprecated.
add_transit_broadening(gamma_transit[,
...])

Adds transit broadening by adding a decoherence
from each node to ground.

axis_labels([collapse, full_labels]) Get a list of axis labels for stacked hamiltonians.
couplings_with(*keys[, method]) Returns a version of self.couplings with only the

keys specified.
decoherence_matrix() Get the decoherence matrix for a system.
dm_basis() Generate basis labels of density matrix components.
get_cell_dipole_moment(state1, state2[,
q])

Get the diploe moment between 2 cell state.

get_cell_hfs_coefficient(state) Get the hyperfine splitting coefficients of the given
state using ARC.

get_cell_hfs_shift(state) Return the hyperfine energy shift for the given hy-
perfine state.

get_cell_tansition_frequency(state1,
state2)

Get the transition frequency between 2 states, ac-
counting for hyperfine splitting.

get_coupling_rabi([coupling_tuple]) Helper function that returns the Rabi frequency of
the coupling from a Sensor for use in functions that
return experimental values.

get_couplings() Returns the couplings of the system as a dictionary
get_doppler_shifts() Returns the Hamiltonian with only detunings set to

the kvector values for each spatial dimension.
get_hamiltonian() Creates the Hamiltonians from the couplings defined

by the fields.
get_hamiltonian_diagonal(values[,
no_stack])

Apply addition and subtraction logic corresponding
to the direction of the couplings.

get_parameter_mesh() Returns the parameter mesh of the sensor.
get_qnums(state) Gets the quantum numbers for a given states.

continues on next page
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Table 6.1 – continued from previous page
get_rotating_frames() Determines the rotating frames for the disconnected

subgraphs.
get_state_num(state) Return the integer number in the bases of a node

with the given quantum numbers.
get_time_couplings() Returns the list of matrices of all couplings in the

system defined with a time_dependence key.
get_time_dependence() Function which returns a list of the time_depen-

dence functions.
get_time_hamiltonians() Get the hamiltonians for the time solver.
get_transition_frequencies() Gets an array of the diagonal elements of the Hamil-

tonian from the field detunings.
get_value_dictionary(key) Get subset of dictionary coupling parameters.
level_ordering() Return a list of the integer numbers of each state

(not the quantum numbers) in descending order by
energy order.

set_experiment_values(probe_tuple, ...[,
...])

Sensor specific method.

set_gamma_matrix(gamma_matrix) Set the decoherence matrix for the system.
spatial_dim() Returns the number of spatial dimensions doppler

averaging will occur over.
states_list() Returns a list of quantum numbers for all states in

the cell.
states_with_label(label) Return a dict of all states with a label matching a

given regular expression (regex) pattern.
unzip_parameters(zip_label[, verbose]) Remove a set of zipped parameters from the internal

zipped_parameters list.
variable_parameters([apply_mesh]) Property to retrieve the values of parameters that

were stored on the graph as arrays.
zip_parameters(*parameters[, zip_label]) Define 2 scannable parameters as "zipped" so they

are scanned in parallel.

Attributes

basis_size Property to return the number of nodes on the Sen-
sor graph.

beam_area Cross-sectional area of the probing beam, in square
meters.

cell_length Optical path length of the medium, in meters.
eta Get the eta value for the system.
kappa Property to calculate the kappa value of the system.
probe_freq Get the probe transition frequency, in rad/s
probe_tuple Coupling edge that corresponds to the probing field.
states Property which gets a list of labels for the sensor in

the order defined in __init__().

_add_coupling(states: Tuple[Union[int, str], Union[int, str]], **field_params)→ None
Function for internal use which will ensure the supplied couplings is valid, add the field to self.couplings.

Exists to abstract away some of the internally necessary bookkeeping functionality from user-facing
classes.

Parameters

• states (tuple) – The integer pair of states to be coupled.
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• **field_params (dict) – The dictionry of couplings parameters. For details on
the keys of the dictionry see add_coupling().

_add_decay_to_graph()→ None
Internal helper method to add population decay rates to the nodes to calculate gamma matrix.

1. add the state lifetime to each node

2. add the transition rate to each edge

_add_state(state: Sequence)→ None
Internal method to add a single state to the Cell.

Should only be used by the _add_states() function, but can be overloaded in custom implementa-
tions of Cell

Parameters
state (int or list of ints) – The quantum numbers of the state to be added.
Should be either length 4 of form [n, l, j, m] or length 5 of form [n, l, j, F, mF]

_add_states(*states: Sequence)→ None
Internal method to add states to the system and update internal variables for energy and decay rates.

Quantum numbers and other states information are stored on the couplings graph nodes. The first state
added to the system is treated as the ground state, and all “absolute energies” are calculated as a difference
from ground. Should only be called in __init__().

Parameters
*states (list[list[int or float]]) – States that are added to the list of
atomic states of interest for the cell. Arguments should be lists of the form [n, l, j,
m], where n, l, j, and m are the ususal quantum numbers describing the state: principal,
orbital, total angular momentum, and magnetic quantum numbers respectively.

_collapse_mesh(mesh)
Collapses the given mesh using rydiqule logic for parameter zipping.

Expected to be given a mesh which is generated by applying numpy.meshgrid function on the output
of variable_parameters() for the system. Given such a mesh, ensures that output mesh matches
the shape expected by rydiqule’s stacking convention, meaning that parameters that are zipped together
will share an axis in the hamiltonian stack.

Parameters
mesh (tuple(numpy.ndarray)) – The uncollapsed meshgid of parameters for the
system. Typically the output of numpy.meshgrid called on variable_parame-
ters().

Returns
The collapsed meshgid with zipped parameters sharing and axis.

Return type
tuple(np.ndarray)

_coupling_with_label(label: str)→ Tuple[Union[int, str], Union[int, str]]
Helper function to return the pair of states corresponding to a particular label string. For internal use.

_remove_edge_data(states: Tuple[Union[int, str], Union[int, str]], kind: str)
Helper function to remove all data that was added with a add_coupling() call or add_decoher-
ence() call. Needed to ensure that two nodes do not have coherent couplings pointing both ways and
to invalidate existing zip parameter couplings.

Parameters

• states (tuple) – Edge from which to remove data.

• kind (str) – What type of data to remove. Valid options are coherent coherent
couplings or the incoherent key to be cleared (must start with gamma).
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Raises
ValueError – If kind is not coherent and doesn’t begin with gamma

_stack_shape(time_dependence: Literal['steady', 'time', 'all'] = 'all')→ Tuple[int, ...]
Internal function to get the shape of the tuple preceding the two hamiltonian axes in get_hamilto-
nian()

_states_valid(states: Sequence)→ Tuple[Union[int, str], Union[int, str]]
Confirms that the provided states are in a valid format.

Typically used internally to validate states added. If provided as a form other than a tuple, first casts to a
tuple for consistent indexing.

Checks that states contains 2 elements, can be interpreted as a tuple, and that both states lie inside
the basis.

Parameters
states (iterable) – iterable of to validate. Should be a pair of integers that can be
cast to a tuple.

Returns
Length 2 tuple of validated state labels.

Return type
tuple

Raises

• ValueError – If states has more than two elements.

• TypeError – If states cannot be converted to a tuple.

• ValueError – If either state in states is outside the basis.

_validate_qnums(qnums: Sequence)
Validate the quantum numbers provided are appropriately formated and cast to a list.

States should either be 4 quantum numbers [n, l, j, m_j] for a pure electron angular momentum state or
5 quantum numbers [n, l, j, F, m_F] for a hyperfine state.

Parameters
qnums (list(float)) – Quantum numbers for the state.

Raises
ValueError – If the list of quantum numbers is not length 4 or 5.

add_coupling(states: Tuple[Union[int, str], Union[int, str]], rabi_frequency: Optional[Union[float,
List[float], ndarray]] = None, detuning: Optional[Union[float, List[float], ndarray]] =
None, transition_frequency: Optional[float] = None, phase: Union[float, List[float],
ndarray] = 0, kvec: Tuple[float, float, float] = (0, 0, 0), time_dependence:
Optional[Callable[[float], float]] = None, label: Optional[str] = None, e_field:
Optional[Union[float, List[float], ndarray]] = None, beam_power: Optional[float] =
None, beam_waist: Optional[float] = None, q: Literal[- 1, 0, 1] = 0, **extra_kwargs)→
None

Overload of add_coupling() which allows for different specification of coupling fields which are
more reflective of real experimental setups.

Rabi frequency is a mandatory argument in Sensor but in Cell, there are 3 options for laser power
specification:

1. Explicit rabi-frequency definition identical to Sensor.

2. Electric field strength, in V/m.

3. Specification of both beam power and beam waist.
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Any one of these options can be used in place of the standard`rabi_frequency` argument of add_cou-
pling().

As inSensor, ifdetuning is specified, the coupling is assumed to act under the rotating-wave approx-
imation (RWA), and transition_frequency can not be specified. However, unlike in a Sensor,
ifdetuning is not specified, in aCell, transition_frequencywill be calculated automatically
based on atomic properties rather than taken as an argument.

Parameters

• states (sequence) – Length-2 list-like object (list or tuple) of integers correspond-
ing to the numbered states of the cell. Tuple order indicates which state to has higher
energy: namely the second state is always assumed to have higher energy. This order
must match the actual energy levels of the atom.

• rabi_frequency (float, optional) – The rabi frequency, in Mrad/s, of the
coupling field. If specified, e_field, beam_power, and beam_waist cannot be
specified.

• detuning (float, optional) – Field detuning, in Mrad/s, of a coupling in the
RWA. If specified, RWA is assumed, otherwise RWA not assumed, and transition fre-
quency will be calculated based on atomic properties.

• transition_frequency (float, optional) – Kept such that method signa-
ture matches parent. Value must be None as the transition frequency is calculated from
atomic properties.

• phase (float, optional) – The relative phase of the field in radians. Defaults to
zero.

• kvec (sequence, optional) – A three-element iterable that defines the atomic
doppler shift on a particular coupling field. It should have magntiude equal to the
doppler shift (in the units of Mrad/s) of an atom moving at the Maxwell-Boltzmann
distribution most probable speed, vP=np.sqrt(2*kB*T/m). I.E. np.linalg.
norm(kvec)=2*np.pi/lambda*vP. If equal to (0,0,0), solvers will ignore
doppler shifts on this field. Defaults to (0,0,0).

• time_dependence (scalar function, optional) – A scalar function that
specifies a time-dependent field. The time dependence function is defined as a funtion
that returns a unitless value as a function of time that is multiplied by the rabi_fre-
quency parameter.

• label (str, optional) – The user-defined name of the coupling. This does not
change any calculations, but can be used to track individual couplings, and will be re-
flected in the output of axis_labels()Default None results in using the states tuple
as the label.

• e_field (float, optional) – Electric field strenth of the coupling in Volts/me-
ter. If specified, rabi_frequency, beam_power, and beam_waist cannot be
specified.

• beam_power (float, optional) – Beam power in Watts. If specified,
beam_waist must also be supplied, and rabi_frequency and e_field cannot
be specified. beam_power and beam_waist cannot be scanned simultaneously.

• beam_waist (float, optional) – 1/e^2 Beam waist (radius) in units of meters.
Only necessary when specifying beam_power.

• q (int, optional) – Coupling polarization in spherical basis. Valid values are -1,
0, 1 for −𝜎, linear, +𝜎. Default is 0 for linear.

Raises

• ValueError – If states is not a list-like of 2 integers.

• ValueError – If an invalid combination of rabi_frequency, e_field,
beam_power, and beam_waist is provided.
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• ValueError – If tranistion_frequency is passed as an argument (it is cal-
culated from atomic properties).

• ValueError – If beam_power and beam_waist are both sequences.

Warns
UserWarning – If any coupling has time-dependence specified, which get_snr cannot
currently handle as it is steady-state only.

Notes

Note: Note that while this function can be used directly just as in Sensor, it will often be called
implicitly via add_couplings() which Cell inherits. While they are equivalent, the second of
these options is often the more clear approach.

Note: Specifying the beam power by beam parameters or electric field still computes the rabi_fre-
quency and adds that quantity to the Cell to maintain consistency across rydiqule’s other calcula-
tions. In other words, beam_power, beam_waist, and e_field will never appear as quantities on
the graph of a Cell.

Examples

In the simplest case, physical properties are calculated automatically in a CellAll the familiar quantities
are present, as well as many more.

>>> cell = rq.Cell("Rb85", *rq.D2_states("Rb85"), cell_length = .0001)
>>> cell.add_coupling(states=(0,1), detuning=1, rabi_frequency=2)
>>> print(dict(cell.couplings.edges))
{(0, 0): { gamma_transit : 0.41172855461658464, label : (0,0) },
(0, 1): { rabi_frequency : 2, detuning : 1,
phase : 0, kvec : (0, 0, 0), label : (0,1) },

(1, 0): { gamma_transition : 37.829349995476726,
label : (1,0) , gamma_transit : 0.41172855461658464}}

Here we see implicitly calling this overloaded function through add_couplings().

>>> cell = rq.Cell("Rb85", *rq.D2_states("Rb85"), cell_length = .0001)
>>> c = {"states":(0,1), "detuning":1, "rabi_frequency":2}
>>> cell.add_couplings(c)
>>> print(dict(cell.couplings.edges))
{(0, 0): { gamma_transit : 0.41172855461658464,
label : (0,0) }, (0, 1): { rabi_frequency : 2, detuning : 1,
phase : 0, kvec : (0, 0, 0),
label : (0,1) }, (1, 0): { gamma_transition : 37.829349995476726,
label : (1,0) , gamma_transit : 0.41172855461658464}}

e_field can be specified in stead of rabi_frequency, but a rabi_frequency will still be
added to the system based on the e_field, rather than e_field directly.

>>> cell = rq.Cell("Rb85", *rq.D2_states("Rb85"), cell_length = .0001)
>>> c = {"states":(0,1), "detuning":1, "e_field":6}
>>> cell.add_couplings(c)
>>> print(cell.couplings.edges(data= e_field ))
>>> print(cell.couplings.edges(data= rabi_frequency ))
[(0, 0, None), (0, 1, None), (1, 0, None)]
[(0, 0, None), (0, 1, -1.172912676105507), (1, 0, None)]
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As can beam_power and beam_waist, with similar behavior regarding how information is stored.

>>> cell = rq.Cell("Rb85", *rq.D2_states("Rb85"), cell_length = .0001)
>>> c = {"states":(0,1), "detuning":1, "beam_power":1, "beam_waist":1}
>>> cell.add_couplings(c)
>>> print(cell.couplings.edges(data= beam_power ))
>>> print(cell.couplings.edges(data= rabi_frequency ))
[(0, 0, None), (0, 1, None), (1, 0, None)]
[(0, 0, None), (0, 1, 4.28138982322625), (1, 0, None)]

add_couplings(*couplings: Dict, **extra_kwargs)→ None
Add any number of couplings between pairs of states.

Acts as an alternative to calling add_coupling() individually for each pair of states. Can be used
interchangably up to preference, and all of keyword add_coupling() are supported dictionary keys
for dictionaries passed to this function.

Parameters

• couplings (tuple of dicts) – Any number of dictionaries, each specifying the
parameters of a single field coupling 2 states. For more details on the keys of each dic-
tionry see the arguments for add_coupling(). Equivalent to passing each dictiories
keys and values to add_coupling() individually.

• **extra_kwargs (dict) – Additional keyword-only arguments to pass to the rel-
evant add_coupling method. The same arguments will be passed to each call of
add_coupling(). Often used for warning suppression.

Raises
ValueError – If the states parameter is missing.

Examples

>>> s = rq.Sensor(3)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":2}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":4}
>>> s.add_couplings(blue, red)
>>> print(s.couplings.edges(data=True))
[(0, 1, { rabi_frequency : 1, detuning : 2, phase : 0, kvec : (0, 0, 0)}
→˓),
(1, 2, { rabi_frequency : 3, detuning : 4, phase : 0, kvec : (0, 0, 0)}
→˓)]

add_decoherence(states: Tuple[Union[int, str], Union[int, str]], gamma: Union[float, List[float],
ndarray], label: Optional[str] = None)

Add decoherent coupling to the graph between two states.

If gamma is list-like, the sensor will scan over the values, solving the system for each different gamma,
identically to the scannable parameters in coherent couplings.

Parameters

• states (tuple of ints) – Length-2 tuple of integers corresponding to the two
states. The first value is the number of state out of which population decays, and the
second is the number of the state into which population decays.

• gamma (float or sequence) – The decay rate, in Mrad/s.

• label (str or None, optional) – Optional label for the decay. If None,
decay will be stored on the graph edge as "gamma". Otherwise, will cast as a string and
decay will be stored on the graph edge as "gamma_"+label.

6.1. rydiqule 61

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str


rydiqule, Release 1.2.2

Notes

Note: Adding a decoherece with a particular label (including None) will override an existing decoherent
transition with that label.

Examples

s = rq.Sensor(3) >>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=1) >>> s.add_cou-
pling(states=(1,2), detuning=1, rabi_frequency=1) >>> s.add_decoherence((2,0), 0.1, label=”misc”)
>>> print(s.decoherence_matrix()) [[0. 0. 0. ] [0. 0. 0. ] [0.1 0. 0. ]]

Decoherence values can also be scanned. Here decoherece from states 2->0 is scanned between 0 and 0.5
for 11 values. We can also see how theHamiltonian shape accounts for this to allow for clean broadcasting,
indicating that the hamiltonian is identical accross all decoherence values.

>>> s = rq.Sensor(3)
>>> gamma = np.linspace(0,0.5,11)
>>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=1)
>>> s.add_coupling(states=(1,2), detuning=1, rabi_frequency=1)
>>> s.add_decoherence((2,0), gamma)
>>> print(s.decoherence_matrix().shape)
(11, 3, 3)
>>> print(s.get_hamiltonian().shape)
(11, 3, 3)

add_energy_shift(state: Union[int, str], shift: Union[float, List[float], ndarray])
Add an energy shift to a state.

First perfoms validation that the provided state is actually a node in the graph, then adds the shift
specified by shift to a self-loop edge keyed with "e_shift". This value will be added to the corre-
sponding diagonal term when the hamiltonian is generated. If the provided node

Parameters

• state (str or int) – The label corresponding to the atomic state to which the shift
will be added.

• shift (float or list-like of float) – The magnitude of the energy shift,
in Mrad/s

Raises
KeyError – If the supplied state is not in the system.

add_energy_shifts(shifts: dict)
Add multiple energy shifts to different nodes.

Shifts are specified with the shifts dictionary, which is keyed with states and has values correspond-
ing to the energy shift applied to the state in Mrad/s. Error handling and validation is done with the
add_energy_shift() function.

Parameters
shifts (dict) – Dictionary keyed with states with values corresponding to the energy
shift, in Mrad/s, of the corresponding state.

add_self_broadening(node: int, gamma: Union[float, List[float], ndarray], label: str = 'self')
Specify self-broadening (such as collisional broadening) of a level.

Equivalent to calling add_decoherence() and specifying both states to be the same, with the “self”
label. For more complicated systems, it may be useful to further specify the source of self-broadening
as, for example, “collisional” for easier bookkeeping and to ensure no values are overwritten.

Parameters
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• node (int) – The integer number of the state node to which the broadening will be
added. The integer corresponds to the state’s position in the graph.

• gamma (float or sequence) – The broadening width to be added in Mrad/s.

• label (str, optional) – Optional label for the state. If None, decay will be
stored on the graph edge as "gamma". Otherwise, will cast as a string and decay will
be stored on the graph edge as "gamma_"+label

Notes

Note: Just as with the add_decoherence() function, adding a decoherence value with a label that
already exists will overwrite an existing decoherent transition with that label. The “self” label is applied
to this function automatically to help avoid an unwanted overwrite.

Examples

>>> s = rq.Sensor(3)
>>> s.add_self_broadening(1, 0.1)
>>> print(s.couplings.edges(data=True))
>>> print(s.decoherence_matrix())
[(1, 1, { gamma_self : 0.1, label : (1,1) })]
[[0. 0. 0. ]
[0. 0.1 0. ]
[0. 0. 0. ]]

add_states()

Deprecated.

Use “atomic_state” keyword argument of the constructor instead.

add_transit_broadening(gamma_transit: Union[float, List[float], ndarray], repop: Union[None,
Dict[Union[int, str], float]] = None, label: str = 'transit')→ None

Adds transit broadening by adding a decoherence from each node to ground.

For each graph node n, adds a decoherent transition from n the specified state (0 by default) using the
add_decoherence()method with the "transit" label. See add_decoherence() for more
details on labeling.

If an array of transit values are provided, they will be automatically zipped together into a single scanning
element.

Parameters

• gamma_transit (float or sequence) – The transit broadening rate inMrad/s.

• repop (dict, optional) – Dictionary of states for transit to repopulate in to.
The keys represent the state labels. The values represent the fractional amount that goes
to that state. If the sum of values does not equal 1, population will not be conserved.
Default is to repopulate everything into the ground state (either state 0 or the first state
in the basis passed to the __init__() method).

Warns

• If the values of the `repop` parameter do not sum to 1, thus meaning

• population will not be conserved.
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Examples

>>> s = rq.Sensor(3)
>>> s.add_transit_broadening(0.1)
>>> print(s.couplings.edges(data=True))
>>> print(s.decoherence_matrix())
[(0, 0, { gamma_transit : 0.1}), (1, 0, { gamma_transit : 0.1}), (2, 0, {
→˓ gamma_transit : 0.1})]
[[0.1 0. 0. ]
[0.1 0. 0. ]
[0.1 0. 0. ]]

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> repop = { g :0.75, e1 : 0.25}
>>> s.add_transit_broadening(0.2, repop=repop)
>>> print(s.decoherence_matrix())
[[0.15 0.05 0. ]
[0.15 0.05 0. ]
[0.15 0.05 0. ]]

axis_labels(collapse: bool = True, full_labels: bool = False)→ List[str]
Get a list of axis labels for stacked hamiltonians.

The axes of a hamiltonian stack are defined as the axes preceding the usual hamiltonian, which are always
the last 2. These axes only exist if one of the parametes used to define a Hamiltonian are lists.

Be default, labels which have been zipped using zip_parameters() will be combined into a single
label, as this is how get_hamiltonian() treats these axes.

The ordering of axis labels is

Returns
Strings corresponding to the label of each axis on a stack of multiple hamiltonians.

Return type
list of str

Examples

There are no preceding axes if there are no list-like parameters.

>>> s = rq.Sensor(3)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":2}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":4}
>>> s.add_couplings(blue, red)
>>> print(s.get_hamiltonian().shape())
>>> print(s.axis_labels())
(3,3)
[]

Adding list-like parameters expands the hamiltonian

>>> s = rq.Sensor(3)
>>> det = np.linspace(-10, 10, 11)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":det, "label":
→˓"blue"}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":det}
>>> s.add_couplings(blue, red)
>>> print(s.get_hamiltonian().shape)
>>> print(s.axis_labels())
(11, 11, 3, 3)
[ blue_detuning , (1, 2)_detuning ]
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The ordering of labels may change if string state names are used. The ordering is determined by the
output of the variable_parameters() method. See method documentation for more detail.

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> det = np.linspace(-10, 10, 11)
>>> blue = {"states":( g , e1 ), "rabi_frequency":1, "detuning":det, "label
→˓":"blue"}
>>> red = {"states":( e1 , e2 ), "rabi_frequency":3, "detuning":det}
>>> s.add_couplings(blue, red)
>>> print(s.get_hamiltonian().shape)
>>> print(s.axis_labels())
(11, 11, 3, 3)
["( e1 , e2 )_detuning", blue_detuning ]

Zipping parameters combines their corresponding labels, since their Hamiltonians now lie on a single axis
of the stack. Here the axis of length 7 (axis 0) corresponds to the rabi frequencies and the axis of shape
11 (axis 1) corresponds to the zipped detunings

>>> s = rq.Sensor(3)
>>> s.add_coupling(states=(0,1), detuning=np.arange(11), rabi_frequency=np.
→˓linspace(-3, 3, 7))
>>> s.add_coupling(states=(1,2), detuning=0.5*np.arange(11), rabi_
→˓frequency=1)
>>> s.zip_parameters("(0,1)_detuning", "(1,2)_detuning", zip_label=
→˓"detunings")
>>> print(s.get_hamiltonian().shape)
>>> print(s.axis_labels())
>>> print(s.axsi_labels(full_labels=True))
(7, 11, 3, 3)
[ (0,1)_rabi_frequency , detunings ]
[ (0,1)_rabi_frequency , (0,1)_detuning|(1,2)_detuning ]

property basis_size

Property to return the number of nodes on the Sensor graph.

Returns
The number of nodes on the graph, corresponding to the basis size for the system.

Return type
int

beam_area: Optional[float] = None

Cross-sectional area of the probing beam, in square meters.

cell_length: Optional[float] = None

Optical path length of the medium, in meters.

couplings_with(*keys: str, method: Literal['all', 'any', 'not any'] = 'all')→ Dict[Tuple[Union[int, str],
Union[int, str]], Dict]

Returns a version of self.couplings with only the keys specified.

Can be specified with a several criteria, including all, none, or any of the keys specified.

Parameters

• str) (keys(tuple of) – parameter names for a state. See add_coupling()
for which names are valid for a Sensor object.

• method ({ all , any , not any }) – Method to see if a given field
matches the keys given. Choosing “all” will return couplings which have keys
matching all of the values provided in the keys argument, while coosing “any”,
will return all couplings with keys matching at least one of the values specified
by keys. For example, sensor.couplings_with("rabi_frequency")
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returns a dictionary of all couplings for which a rabi_frequency was spec-
ified. sensor.couplings_with("rabi_frequency", "detuning",
method="all") returns all couplings for which both rabi_frequency and detuning
are specified. ‘sensor.couplings_with(“rabi_frequency”, “detuning”, method=”any”)` re-
turns all couplings for which either rabi_frequency or detuning are specified. Defaults to
“all”.

Returns
A copy of the sensor.couplings dictionary with only couplings containing the spec-
ified parameter keys.

Return type
dict

Examples

Can be used, for example, to return couplings in the roating wave approximation.

>>> s = rq.Sensor(3)
>>> sinusoid = lambda t: 0 if t<1 else sin(100*t)
>>> f2 = {"states": (0,1), "detuning": 1, "rabi_frequency":2}
>>> f1 = {"states": (1,2), "transition_frequency":100, "rabi_frequency":1,
→˓"time_dependence": sinusoid}
>>> s.add_couplings(f1, f2)
>>> gamma = np.array([[.2,0,0],
... [.1,0,0],
... [0.05,0,0]])
>>> s.set_gamma_matrix(gamma)
>>> print(s.couplings_with("detuning"))
{(0, 1): { rabi_frequency : 2, detuning : 1, phase : 0, kvec : (0, 0,␣
→˓0), no_rwa_warning : False, label : (0,1) }}

decoherence_matrix()→ ndarray
Get the decoherence matrix for a system.

This overload differs from decoherence_matrix() by including state lifetimes and decay rates
calculated from arc rydberg without any explicit definition of decoherence terms. In other words, it
ensures that the calculated decoherence terms match what is expected for a particular real-world atom.

Returns
The decoherence matrix stack of the system.

Return type
numpy.ndarray

dm_basis()→ ndarray
Generate basis labels of density matrix components.

The basis corresponds to the elements in the solution. This is not the complex basis of the sensor class, but
rather the real basis of a solution after calling one of rydiqule’s solvers. This means that the ground
state population has been removed and it has been transformed to the real basis.

Returns
Array of string labels corresponding to the solving basis. Is a 1-D array of length n**2-1.

Return type
numpy.ndarray
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Examples

>>> s = rq.Sensor(3)
>>> print(s.basis())
[ 01_real 02_real 01_imag 11_real 12_real 02_imag 12_imag
22_real ]

property eta

Get the eta value for the system.

The value is computed with the following formula Eq. 7 of Meyer et. al. PRA 104, 043103 (2021)

𝜂 =

√︃
𝜔𝜇2

2𝑐𝜖0ℎ𝐴

Where 𝜔 is the probing frequency, 𝜇 is the dipole moment, 𝐴 is the beam area, 𝑐 is the speed of light, 𝜖0
is the dielectric constant, andℎ is the reduced Plank constant.

This value is only computed if there is not a _eta attribute in the system. If this attribute does exist,
this function acts as an accessor for that attribute.

Notes

There is no way to set the eta attribute directly at present, it is always inferred with the above formula.
However, this functionality exists so that custom implementations or specific use cases of Cell may set
it for their own purposes.

Returns
The value eta for the system.

Return type
float

get_cell_dipole_moment(state1: Union[Sequence, int], state2: Union[Sequence, int], q=0)
Get the diploe moment between 2 cell state.

Either both statesmust be hyperfine, or both statesmust not be hyperfine states. Currently dipolemoments
cannot be calculated for a mix of state types.

Parameters

• state1 (Union[QState, int]) – The state from which the electron is transition-
ing.

• state2 (Union[QState, int]) – The state to which the electron is transitioning.

• q (int, optional) – Polarization of probing optical field in spherical basis. Must
be -1, 0, 1. Defaults to 0 for linear polarization.

Returns
The dipole moment of the transition in units of e*a_0.

Return type
float

Raises
ValueError – If both states are not of the same type.

get_cell_hfs_coefficient(state: Union[Sequence, int])

Get the hyperfine splitting coefficients of the given state using ARC.

State can either be given as a list of quantum numbers or an integer value corresponding to a key in the
basis of the Cell. Returns 0 if not a hyperfine state and the values A, B returned by ARC Rydberg’s
getHFSCoefficients() function if it is a hyperfine state.

6.1. rydiqule 67

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int


rydiqule, Release 1.2.2

Parameters
state (Union[QState, int]) – The state to calculate. Can either be an integer
corresponding to a graph node or the quantum numbers of a state in the system.

Returns

• float – The hyperfine splitting coeffiecient A.

• float – The hyperfine splitting coeffiecient B.

get_cell_hfs_shift(state: Union[Sequence, int])

Return the hyperfine energy shift for the given hyperfine state.

Returns the energy shift if state is a hyperfine state (defined with 5 quantum numbers) or 0 if the
state is not a hyperfine state (defined by 4 quantum numbers)

Parameters
state (Union[QState, int]) – The state for which to calculate the hyperfine shift.
Can be a list of quantum numbers or an integer state level of Cell

Returns
The hyperfine energy shift in units of Mrad/s.

Return type
float

get_cell_tansition_frequency(state1: Union[Sequence, int], state2: Union[Sequence, int])
Get the transition frequency between 2 states, accounting for hyperfine splitting.

If either state is a hyperfine state, its associated hyperfine shift is added or or subtracted to calculate the
total energy difference between 2 states

Parameters

• state1 (Union[QState, int]) – The state the electron is transitioning from.
Either a integer of one of the basis states, or a list of quantum numbers.

• state2 (Union[QState, int]) – The state the electron is transitioning to. Either
an integer of one of the basis states, or a list of quantum numbers.

Returns
The total energy difference between two states accounting for hyperfine splitting.

Return type
float

get_coupling_rabi(coupling_tuple: Tuple[Union[int, str], Union[int, str]] = (0, 1))→ Union[float,
ndarray]

Helper function that returns the Rabi frequency of the coupling from a Sensor for use in functions that
return experimental values.

Parameters
coupling_tuple (tuple of int) – The tuple that defines the coupling to extract
to rabi frequencies from

Returns
Rabi frequency defined in the Sensor

Return type
float of numpy.ndarray

Warns
UserWarning – If the coupling has time dependence. In this case, the returned Rabi
frequency may not be well defined.
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get_couplings()→ Dict[Tuple[Union[int, str], Union[int, str]], Dict]
Returns the couplings of the system as a dictionary

Deprecating in favor of calling the couplings.edges attribute directly.

Returns
A dictionary of key-value pairs with the keys corresponding to levels of transition, and the
values being dictionaries of coupling attributes.

Return type
dict

get_doppler_shifts()→ ndarray
Returns the Hamiltonian with only detunings set to the kvector values for each spatial dimension.

Determining if a float should be treated as zero is done using numpy.isclose, which has default
absolute tolerance of 1e-08.

Returns
Array of shape (used_spatial_dim,n,n), Hamiltonians with only the doppler shifts present
along each non-zero spatial dimension specified by the fields’ “kvec” parameter.

Return type
numpy.ndarray

get_hamiltonian()→ ndarray
Creates the Hamiltonians from the couplings defined by the fields.

They will only be the steady state hamiltonians, i.e. will only contain terms which do not vary with time.
Implicitly creates hamiltonians in “stacks” by creating a grid of all supported coupling parameters which
are lists. This grid of parameters will not contain rabi-frequency parameters which vary with time and
are defined as list-like. Rather, the associated axis will be of length 1, with the scanning over this value
handled by the get_time_couplings() function.

For m list-like parameters x1,x2,…,xm with shapes N1,N2,…,Nm, and basis size n, the output will
be shape (N1,N2,...,Nm, n, n). The dimensions N1,N2,…Nm are labeled by the output of
axis_labels().

If any parameters have been zipped with the _zip_parameters() method, those parameters will
share an axis in the final hamiltonian stack. In this case, if axis N1 and N2 above are the same shape and
zipped, the final Hamiltonian will be of shape (N1,...,Nm, n, n).

In the case where the basis of the Sensor was explicitly defined with a list of states, the ordering of
rows and coulumns in the hamiltonian corresponds to the ordering of states passed in the basis.

See rydiqule’s conventions for matrix stacking for more details.

Returns
The complex hamiltonian stack for the sensor.

Return type
np.ndarray

Examples

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":det}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":det}
>>> s.add_couplings(red, blue)
>>> print(s.get_hamiltonian().shape)
(11, 11, 3, 3)

Time dependent couplings are handled separately. The axis that contains array-like parameters with time
dependence is length 1 in the steady-state Hamiltonian.
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>>> s = rq.Sensor(3)
>>> rabi = np.linspace(-1,1,11)
>>> step = lambda t: 0 if t<1 else 1
>>> blue = {"states":(0,1), "rabi_frequency":rabi, "detuning":1}
>>> red = {"states":(1,2), "rabi_frequency":rabi, "detuning":0, time_
→˓dependence : step}
>>> s.add_couplings(red, blue)
>>> print(s.get_hamiltonian().shape)
(11, 1, 3, 3)

Zipping parameters means they share an axis in the Hamiltonian.

>>> s = rq.Sensor(3)
>>> s.add_coupling(states=(0,1), detuning=np.arange(11), rabi_frequency=2)
>>> s.add_coupling(states=(1,2), detuning=0.5*np.arange(11), rabi_
→˓frequency=1)
>>> s.zip_parameters("(0,1)_detuning", "(1,2)_detuning")
>>> H = s.get_hamiltonian()
>>> print(H.shape)
(11, 3, 3)

If the basis is provided as a list of string labels, the ordering of Hamiltonian rows And columns will
correspond to the order of states provided.

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> s.add_coupling(( g , e1 ), detuning=1, rabi_frequency=1)
>>> s.add_coupling(( e1 , e2 ), detuning=1.5, rabi_frequency=1)
>>> print(s.get_hamiltonian())
[[ 0. +0.j 0.5+0.j 0. +0.j]
[ 0.5-0.j -1. +0.j 0.5+0.j]
[ 0. +0.j 0.5-0.j -2.5+0.j]]

get_hamiltonian_diagonal(values: dict, no_stack: bool = False)→ ndarray
Apply addition and subtraction logic corresponding to the direction of the couplings.

For a given state n, the path from ground will be traced to n. For each edge along this path, values will
be added where the path direction and coupling direction match, and subtracting values where they do
not. The sum of all such values along the path is the n th term in the output array.

Primarily for internal functions which help generate hamiltonians. Most commonly used to calculate total
detunings for ranges of couplings under the RWA

Parameters

• values (dict) – Key-value pairs where the keys correspond to transitions (agnostic
to ordering of states) and values corresponding to the values to which the logic will be
applied.

• no_stack (bool, optional) – Whether to ignore variable parameters in the sys-
tem and use only basic math operations rather than reshape the output. Typically only
True for calculating doppler shifts.

Returns
The digonal of the hamiltonian of the system of shape (*l,n), where l is the shape of
the hamiltonian stack for the sensor.

Return type
numpy.ndarray

get_parameter_mesh()→ List[ndarray]
Returns the parameter mesh of the sensor.

The parameter mesh is the flattened grid of variable parameters in all the couplings of a sensor. Wraps
numpy.meshgrid with the indexing argument always "ij" for matrix indexing.

70 Chapter 6. API Documenation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray


rydiqule, Release 1.2.2

Returns
list of mesh grids for every variable parameter

Return type
list of numpy.ndarray

Examples

>>> s = rq.Sensor(3)
>>> rabi1 = np.linspace(-1,1,11)
>>> rabi2 = np.linspace(-2,2,21)
>>> s.add_coupling(states=(0,1), rabi_frequency=rabi1, detuning=1)
>>> s.add_coupling(states=(1,2), rabi_frequency=rabi2, detuning=1)
>>> for p in s.get_parameter_mesh():
... print(p.shape)
(11, 1)
(1, 21)

get_qnums(state: Union[Sequence, int])

Gets the quantum numbers for a given states.

Works by either retrieving quantum numbers for an integer state, or transparently passing through a state
already defined by its quantum numbers.

Parameters
state (Union[QState, int]) – The state the get the quantum numbers for.

Returns
The quantum numbers of the state. If state is already a list of quantum numbers, just
returns the value of state

Return type
list(int)

Raises
ValueError – If the integer provided is outside the basis of the Cell.

get_rotating_frames()→ dict
Determines the rotating frames for the disconnected subgraphs.

Each returned path gives the states traversed, and the sign gives the direction of the coupling. If the sign
is negative, the coupling is going to a lower energy state. Choice of frame depends on graph distance to
lowest indexed node on subgraph, ties broken by lowest indexed path traversed first.

Returns
Dictionary keyed by disconnected subgraphs, values are path dictionaries for each node of
the subgraph. Each path shows the node indexes traversed, where a negative sign denotes
a transition to a lower energy state.

Return type
dict

get_state_num(state: Union[Sequence, int])
Return the integer number in the bases of a node with the given quantum numbers.

Quantum numbers for a state are determined by the “qnums” dictionary key on that node. Can handle
either a list of quantum numbers or an integer state. In the case of an integer state, just returns the integer
value passed in.

Parameters
state (Union[QState, int]) – Either the quantum numbers or integer value of
the states.
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Raises
ValueError: – If there is no state matching the given quantum numbers

Returns
The integer value corresponding the number of the state in the basis.

Return type
int

get_time_couplings()→ Tuple[List[ndarray], List[ndarray]]
Returns the list of matrices of all couplings in the system defined with a time_dependence key.

The ouput will be two lists of matricies representing which terms of the hamiltonian are dependent on
each time-dependent coupling. The lists will be of length M and shape (*l_time, n, n), where M
is the number of time-dependent couplings, l_time is time-dependent stack shape (possibly all ones),
and n is the basis size. Each matrix will have terms equal to the rabi frequency (or half the rabi frequency
under RWA) in positions that correspond to the associated transition. For example, in the case where
there is a time_dependence function defined for the (2,3) transition with a rabi frequency of 1,
the associated time coupling matrix will be all zeros, with a 1 in the (2,3) and (3,2) positions.

Typically, this function is called internally and multiplied by the output of the get_time_depen-
dence() function.

Returns

• list of numpy.ndarray – The list of M (*l,n,n)matrices representing the real-valued
time-dependent portion of the hamiltonian. For 0 <= i <= M, the ith value along
the first axis is the portion of the matrix which will be multiplied by the output of the ith
time_dependence function.

• list of numpy.ndarray – The list of M (*l,n,n) matrices representing the
imaginary-valued time-dependent portion of the hamiltonian. For 0 <= i <= M,
the ith value along the first axis is the portion of the matrix which will be multiplied by
the output of the ith time_dependence function.

Examples

>>> s = rq.Sensor(3)
>>> step = lambda t: 0 if t<1 else 1
>>> wave = lambda t: np.sin(2000*np.pi*t)
>>> f1 = {"states": (0,1), "transition_frequency":10, "rabi_frequency": 1,
→˓"time_dependence":wave}
>>> f2 = {"states": (1,2), "transition_frequency":10, "rabi_frequency": 2,
→˓"time_dependence":step}
>>> s.add_couplings(f1, f2)
>>> time_hams, time_hams_i = s.get_time_couplings()
>>> for H in time_hams:
... print(H)
[[0.+0.j 1.+0.j 0.+0.j]
[1.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j]]
[[0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 2.+0.j]
[0.+0.j 2.+0.j 0.+0.j]]

To handle stacking across the steady-state and time hamiltonians, the dimensions are matched in a way
that broadcasting works in a numpy-friendly way

>>> s = rq.Sensor(3)
>>> rabi = np.linspace(-1,1,11)
>>> step = lambda t: 0 if t<1 else 1
>>> blue = {"states":(0,1), "rabi_frequency":rabi, "detuning":1}

(continues on next page)
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(continued from previous page)

>>> red = {"states":(1,2), "rabi_frequency":rabi, "detuning":0, time_
→˓dependence : step}
>>> s.add_couplings(red, blue)
>>> time_hams, time_hams_i = s.get_time_couplings()
>>> print(s.get_hamiltonian().shape)
>>> print(time_hams[0].shape)
>>> print(time_hams_i[0].shape)
(1, 11, 3, 3)
(11, 1, 3, 3)
(11, 1, 3, 3)

get_time_dependence()→ List[Callable[[float], complex]]
Function which returns a list of the time_dependence functions.

The list is returned with in the order that matches with the time hamiltonians from get_time_cou-
plings() such that the ith element of of the return of this functions corresponds with the ith Hamil-
tonian terms returned by that function.

Returns
List of scalar functions, representing all couplings specified with a time_dependence.

Return type
list

Examples

>>> s = rq.Sensor(3)
>>> step = lambda t: 0 if t<1 else 1
>>> wave = lambda t: np.sin(2000*np.pi*t)
>>> f1 = {"states": (0,1), "transition_frequency":10, "rabi_frequency": 1,
→˓"time_dependence":wave}
>>> f2 = {"states": (1,2), "transition_frequency":10, "rabi_frequency": 2,
→˓"time_dependence":step}
>>> s.add_couplings(f1, f2)
>>> print(s.get_time_dependence())
[<function <lambda> at 0x7fb310edd9d0>, <function <lambda> at␣
→˓0x7fb37c0c81f0>]

get_time_hamiltonians()→ Tuple[ndarray, List[ndarray], List[ndarray]]
Get the hamiltonians for the time solver.

Get both the steady state hamiltonian (as returned by get_hamiltonian()) and the time_dependent
hamiltonians (as returned by get_time_couplings()). The time dependent hamiltonians give 2
terms, the hamiltonian corresponding to the real part of the coupling and the hamiltonian corresponding
to the imaginary part.

In the case where the basis of the Sensor was explicitly defined with a list of states, the ordering of
rows and coulumns in the hamiltonian corresponds to the ordering of states passed in the basis.

Returns

• hamiltonian_base (np.ndarray) – The (*l,n,n) shape base hamiltonian of the sys-
tem containing all elements that do not depend on time, where n is the basis size of the
sensor.

• dipole_matrix_real (np.ndarray) – The(M,n,n) shape array ofmatrices representing
the real time-dependent portion of the hamiltonian. For 0 <= i <= M, the ith value
along the first axis is the portion of the matrix which will be multiplied by the output of
the ith time_dependence function.

• dipole_matrix_imag (nd.ndarray) – The (M,n,n) shape array of matrices represent-
ing the imaginary time-dependent portion of the hamiltonian. For 0 <= i <= M, the
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ith value along the first axis is the portion of the matrix which will be multiplied by the
output of the ith time_dependence function.

Examples

>>> s = rq.Sensor(2)
>>> step = lambda t: 0. if t<1 else 1.
>>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=1, time_
→˓dependence=step)
>>> H_base, H_time_real, H_time_imaginary = s.get_time_hamiltonians()
>>> print(H_base)
>>> print(H_time_real)
>>> print(H_time_imaginary)
[[0.+0.j 0.+0.j]
[0.+0.j 1.+0.j]]
[array([[0. +0.j, 0.5+0.j],

[0.5+0.j, 0. +0.j]])]
[array([[0.+0.j , 0.+0.5j],

[0.-0.5j, 0.+0.j ]])]

If the basis is passed as a list, rows and columns are in the order specified:

>>> s = rq.Sensor([ g , e ])
>>> step = lambda t: 0. if t<1 else 1.
>>> s.add_coupling(states=( g , e ), detuning=1, rabi_frequency=1, time_
→˓dependence=step)
>>> H_base, H_time_real, H_time_imaginary = s.get_time_hamiltonians()
>>> print(H_base)
>>> print(H_time_real)
>>> print(H_time_imaginary)
[[ 0.+0.j 0.+0.j]
[ 0.+0.j -1.+0.j]]
[array([[0. +0.j, 0.5+0.j],

[0.5+0.j, 0. +0.j]])]
[array([[0.+0.j , 0.+0.5j],

[0.-0.5j, 0.+0.j ]])]

get_transition_frequencies()→ ndarray
Gets an array of the diagonal elements of the Hamiltonian from the field detunings.

Wraps the get_hamiltonian_diagonal() function using both transition frequencies and detun-
ings. Primarily for internal use.

Returns
N-D array of the hamiltonian diagonal. For an n-level system with stack shape *l, will be
shape (*l, n)

Return type
numpy.ndarray

get_value_dictionary(key: str)→ dict
Get subset of dictionary coupling parameters.

Return a dictionary of key value pairs where the keys are couplings added to the system and the val-
ues are the value of the parameter specified by key. Produces an output that can be passed directly to
get_hamiltonian_diagonal(). Only couplings whose parameter dictionaries contain “key” will
be in the returned dictionary.

Parameters
key (str) – String value of the parameter name to build the dictionary. For example,

74 Chapter 6. API Documenation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str


rydiqule, Release 1.2.2

get_value_dictionary("detuning") will return a dictionary with keys corre-
sponding to transitions and values corresponding to detuning for each transition which has
a detuning.

Returns
Coupling dictionary with couplings as keys and corresponding values set by input key.

Return type
dict

Examples

>>> s = rq.Sensor(4)
>>> f1 = {"states": (0,1), "detuning": 2, "rabi_frequency": 1}
>>> f2 = {"states": (1,2), "detuning": 3, "rabi_frequency": 2}
>>> f3 = {"states": (2,3), "rabi_frequency": 3, "transition_frequency": 3}
>>> s.add_couplings(f1, f2, f3)
>>> print(s.get_value_dictionary("detuning"))
{(0,1): 2, (1,2): 3}

property kappa

Property to calculate the kappa value of the system.

The value is computed with the following formula Eq. 5 of Meyer et. al. PRA 104, 043103 (2021)

𝜅 =
𝜔𝑛𝜇2

2𝑐𝜖0ℎ

Where 𝜔 is the probing frequency, 𝜇 is the dipole moment, 𝑛 is atomic cloud density, 𝑐 is the speed of
light, 𝜖0 is the dielectric constant, andℎ is the reduced Plank constant.

This value is only computed if there is not a _kappa attribute in the system. If this attribute does exist,
this function acts as an accessor for that attribute.

Notes

There is no way to set the kappa attribute directly at presence, it is always inferred with the above
formula. However, this functionality exists so that custom implementations or specific use cases of Cell
may set it for their own purposes.

Returns
The value kappa for the system.

Return type
float

level_ordering()→ List[int]
Return a list of the integer numbers of each state (not the quantum numbers) in descending order by
energy order.

All energies are calculated with respect to the ground state energy, which is defined as 0. Ground state is
determined by the first state added to the system (state 0). Thus, state 0 will always be last in the list.

Returns
The level numbers of the states in order of decending energy relative to the ground state
(state 0).

Return type
list[int]
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Examples

For the following example, states are added to the cell in ascending energy order, so the return reflects
that, with the highest-energy state first.

>>> state1 = [50, 2, 2.5, 2.5]
>>> state2 = [51, 2, 2.5, 2.5]
>>> cell = rq.Cell("Rb85", *rq.D2_states("Rb85"), state1, state2,
>>> cell_length = .00001) #uses the D2 line of Rb85
>>> print(cell.states_list())
>>> print(cell.level_ordering())
[[5, 0, 0.5, 0.5], [5, 1, 1.5, 0.5], [50, 2, 2.5, 2.5], [51, 2, 2.5, 2.5]]
[3, 2, 1, 0]

If we add state1 and state2 in the opposite order (thus switching their positions in the states list),
the level ordering will change since state2 is still a higher energy.

>>> state1 = [50, 2, 2.5, 2.5]
>>> state2 = [51, 2, 2.5, 2.5]
>>> cell = rq.Cell("Rb85", *rq.D2_states("Rb85"), state2, state1) #uses␣
→˓the D2 line of Rb85
>>> print(cell.states_list())
>>> print(cell.level_ordering())
[[5, 0, 0.5, 0.5], [5, 1, 1.5, 0.5], [51, 2, 2.5, 2.5], [50, 2, 2.5, 2.5]]
[2, 3, 1, 0]

property probe_freq

Get the probe transition frequency, in rad/s

Returns
Probe transitiion frequency, in rad/s

Return type
float

probe_tuple: Optional[States] = None

Coupling edge that corresponds to the probing field. Defaults to (0,1) in Cell.

set_experiment_values(probe_tuple: Tuple[int, int], probe_freq: float, kappa: float, eta:
Optional[float] = None, cell_length: Optional[float] = None, beam_area:
Optional[float] = None)

Sensor specific method. Do not use with Cell.

This function does not do anything as Cell automatically handles this functionality internally.

Warns
UserWarning (Warns if function is used.)

set_gamma_matrix(gamma_matrix: ndarray)

Set the decoherence matrix for the system.

Works by first removing all existing decoherent data from graph edges, then individually adding all
nonzero terms of a provided gamma matrix to the corresponding graph edges. Can be used to set all
decoherence attributes to edges simultaneously, but add_decoherence() is preferred.

Unlike add_decoherence(), does not support scanning multiple decoherence values, rather should
be used to set the decoherences of the system to individual static values.

Parameters
gamma_matrix (numpy.ndarray) – Array of shape (basis_size, ba-
sis_size). Element (i,j) describes the decoherence rate, in Mrad/s, from state i to
state j.

Raises
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• TypeError – If gamma_matrix is not a numpy array.

• ValueError – If gamma_matrix is not a square matrix of the appropriate size

• ValueError – If the shape of gamma_matrix is not compatible with self.
basis_size.

Examples

>>> s = rq.Sensor(2)
>>> f1 = {"states": (0,1), "transition_frequency":10, "rabi_frequency": 1}
>>> s.add_couplings(f1)
>>> gamma = np.array([[.1,0],[.1,0]])
>>> s.set_gamma_matrix(gamma)
>>> print(s.decoherence_matrix())
[[0.1 0. ]
[0.1 0. ]]

spatial_dim()→ int
Returns the number of spatial dimensions doppler averaging will occur over.

Determining if a float should be treated as zero is done using numpy.isclose, which has default
absolute tolerance of 1e-08.

Returns
Number of dimensions, between 0 and 3, where 0 means no doppler averaging kvectors
have been specified or are too small to be calculates.

Return type
int

Examples

No spatial dimesions specified

>>> s = rq.Sensor(2)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1)
>>> print(s.spatial_dim())
0

One spatial dimension specified

>>> s = rq.Sensor(2)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1, kvec=(0,0,1))
>>> print(s.spatial_dim())
1

Multiple spatial dimensions can exist in a single coupling or across multiple couplings

>>> s = rq.Sensor(2)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1, kvec=(1,0,1))
>>> print(s.spatial_dim())
2

>>> s = rq.Sensor(3)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1, kvec=(1,0,1))
>>> s.add_coupling((1,2), detuning = 2, rabi_freqency=2, kvec=(0,1,0))
>>> print(s.spatial_dim())
3
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property states

Property which gets a list of labels for the sensor in the order defined in __init__(). This is also the
order corresponding the rows and columns in the system Hamiltonian and decoherence matrix.

Returns
List of states of the system defined the constructor, in the order corresponding to rows and
columns of the Hamiltonian.

Return type
list

states_list()→ List[Sequence]
Returns a list of quantum numbers for all states in the cell.

States position in the list will be in the order they were added, and correspond to the density matrix values
numbered with the same index.

Returns
List of quantum states of the form [n, l, j, m] that are stored on graph nodes in the cell.

Return type
list[list]

Examples

>>> state1 = [50, 2, 2.5, 2.5] # states are written with quantum numbers␣
→˓[n, l, j, m]
>>> state2 = [51, 2, 2.5, 2.5]
>>> cell = rq.Cell("Rb85", *rq.D2_states(5), state1, state2,
>>> cell_length = .0001) #D2 states gets the states for the Rubidium 85 D2␣
→˓line
>>> print(cell.states_list())
[[5, 0, 0.5, 0.5], [5, 1, 1.5, 0.5], [50, 2, 2.5, 2.5], [51, 2, 2.5, 2.5]]

states_with_label(label: str)→ List[Union[int, str]]
Return a dict of all states with a label matching a given regular expression (regex) pattern. The dictionary
will be consist of keys which are string labels applied to states with the label_states() function,
and values which are the corresponding integer values of the node on the graph. For more information
on using regex patterns see this guide <https://docs.python.org/3/howto/regex.
html#regex-howto>.

Parameters
label (string) – Regular expression pattern to match labels to. All labels matching
the string will be returned in the keys of the dictionary.

Returns
List of all labels of states in the sensor which match the provided regex pattern.

Return type
list

Raises
ValueError – If label is not a regular expression string.
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Examples

>>> s = rq.Sensor(3)
>>> s.add_coupling((0,1), detuning=1, rabi_freqency=1, label="hi mom")
>>> s.add_coupling((1,2), detuning=2, rabi_requency=2)
>>> s.label_states({0:"g", 1:"e1", 2:"e2"})
>>> print(s.states_with_label("e[12]"))
[ e1 , e2 ]

unzip_parameters(zip_label, verbose=True)
Remove a set of zipped parameters from the internal zipped_parameters list.

If an element of the internal _zipped_parameters array matches ALL labels provided, removes it
from the internal zipped_parametersmethod. If no such element is in _zipped_parameters,
does nothing.

Parameters
zip_label (str) – The string label corresponding the key to be deleted in the
_zipped_parameters attribute.

Notes

Note: This function should always be used rather than modifying the _zipped_parameters at-
tribute directly.

Examples

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=(0,1), detuning=det, rabi_frequency=1, label=
→˓"probe")
>>> s.add_coupling(states=(1,2), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "(1,2)_detuning", zip_label="demo1")
>>> print(s._zipped_parameters) #NOT modifying directly
>>> s.unzip_parameters("demo1")
>>> print(s._zipped_parameters) #NOT modifying directly
{ demo1 : [ (1,2)_detuning , probe_detuning ]}
{}

If the labels provided are not a match, a message is printed and nothing is altered.

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=(0,1), detuning=det, rabi_frequency=1, label=
→˓"probe")
>>> s.add_coupling(states=(1,2), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "(1,2)_detuning")
>>> print(s._zipped_parameters) #NOT modifying directly
>>> s.unzip_parameters( blip_0 )
>>> print(s._zipped_parameters) #NOT modifying directly
{ zip_0 : [ (1,2)_detuning , probe_detuning ]}
No label matching blip_0, no action taken
{ zip_0 : [ (1,2)_detuning , probe_detuning ]}

variable_parameters(apply_mesh: bool = False)→ List[Tuple[Tuple[Union[int, str], Union[int,
str]], str, ndarray]]

Property to retrieve the values of parameters that were stored on the graph as arrays.
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Values are returned as a list of tuples in the standard order of pythons default sorting, applied first to the
tuple indicating states and then to the key of the parameter itself. This means that couplings are sorted first
by lower state, then by upper state, then alphabetically by the name of the parameter.To determine order,
all state labels treated as their integer position in the basis as determined by ordering in the constructor
__init__().

Returns
A list of tuples corresponding to the parameters of the systems that are variable (i.e. stored
as an array). They are ordered accordning to states, then according to variable name. Tuple
entries of the list take the form (states, param_name, value)

Return type
list of tuples

Examples

>>> s = rq.Sensor(3)
>>> vals = np.linspace(-1,2,3)
>>> s.add_coupling(states=(1,2), rabi_frequency=vals, detuning=1)
>>> s.add_coupling(states=(0,1), rabi_frequency=vals, detuning=vals)
>>> for states, key, value in s.variable_parameters():
... print(f"{states}: {key}={value}")
(0, 1): detuning=[-1. 0.5 2. ]
(0, 1): rabi_frequency=[-1. 0.5 2. ]
(1, 2): rabi_frequency=[-1. 0.5 2. ]

The order is important; in the unzipped case, it will sort as though all state labels were cast to strings,
meaning integers will always be treated as first.

>>> s = rq.Sensor([None, e1 , e2 ])
>>> det1 = np.linspace(-1, 1, 3)
>>> det2 = np.linspace(-1, 1, 5)
>>> blue = {"states":(0, e1 ), "rabi_frequency":1, "detuning":det1}
>>> red = {"states":( e1 , e2 ), "rabi_frequency":3, "detuning":det2}
>>> s.add_couplings(blue, red)
>>> for states, key, value in s.variable_parameters():
... print(f"{states}: {key}={value}")
>>> print(f"Axis Labels: {s.axis_labels()}")
( g , 1): detuning=[-1. 0. 1.]
(1, 2): detuning=[-1. -0.5 0. 0.5 1. ]
Axis Labels: ["( g ,1)_detuning", (1,2)_detuning ]

zip_parameters(*parameters: str, zip_label: Optional[str] = None)

Define 2 scannable parameters as “zipped” so they are scanned in parallel.

Zipped parameters will share an axis when quantities relevant to the equations of motion, such as the
gamma_matrix and hamiltonian are generated. Note that calling this function does not affect
internal quanties directly, but adds their labels together in the internal self._zipped_parameters
dict, and they are zipped at calculation time for hamiltonian and decoherence_matrix.

Parameters
parameters (str) – Parameter labels to scan together. Parameter labels are
strings of the form "<coupling_label>_<parameter_name>", such as "(0,
1)_detuning". Must be at least 2 labels to zip. Note that couplings are specified in
the add_coupling() function. If unspecified in this function, the pair of states in the
coupling cast to a string will be used.

zip_label
[optional, str] String label shorthand for the zipped parameters. The label for the axis of these
parameters in axis_labels(). Does not affect functionality of the Sensor. If unspecified, the
label used will be "zip_" + <number>.
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Raises

• ValueError – If fewer than 2 labels are provided.

• ValueError – If any of the 2 labels are the same.

• ValueError – If any elements of labels are not labels of couplings in the sensor.

• ValueError – If any of the parameters specified by labels are already zipped.

• ValueError – If any of the parameters specified are not list-like.

• ValueError – If all list-like parameters are not the same length.

Notes

Note: This function should be called last after all Sensor couplings and dephasings have been added.
Changing a coupling that has already been zipped removes it from the self.zipped_parameters
list.

Note: Modifying the Sensor.zipped_parameters attribute directly can break some function-
ality and should be avoided. Use this function or unzip_parameters() instead.

Note: When defining the zip strings for states labelled with strings, be sure to additional or " characters
on either side of the labels, as demonstrated in the second example below.

Examples

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=(0,1), detuning=det, rabi_frequency=1, label=
→˓"probe")
>>> s.add_coupling(states=(1,2), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "(1,2)_detuning", zip_label="demo_
→˓zip")
>>> print(s._zipped_parameters) #NOT modifying directly
{ demo_zip : [ (1,2)_detuning , probe_detuning ]}

Make sure to add the appropriate additional string markings when the states are strings.

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=( g , e1 ), detuning=det, rabi_frequency=1,␣
→˓label="probe")
>>> s.add_coupling(states=( e1 , e2 ), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "( e1 , e2 )_detuning", zip_label=
→˓"demo_zip")
>>> print(s._zipped_parameters) #NOT modifying directly
{ demo_zip : ["( e1 , e2 )_detuning", probe_detuning ]}
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6.1.3 rydiqule.doppler_utils

Utilities for implementing Doppler averaging

Functions

apply_doppler_weights(sols, velocities, vol-
umes)

Calculates and applies the weight for each doppler class
given unweighted solutions to doppler-shifted equa-
tions.

doppler_classes([method]) Defines which velocity classes to sample for doppler av-
eraging.

doppler_mesh(doppler_velocities, spatial_dim) Creates meshgrids of evaluation points and point "vol-
umes" for doppler averaging.

gaussian3d(Vs) Evaluate a multi-dimensional gaussian for the given de-
tunings (in units of most probable speed).

generate_doppler_shift_eom(doppler_hamiltonians)Generates the EOMs for the supplied doppler shifts.
get_doppler_equations(base_eoms, ...) Returns the equations for each slice of the doppler pro-

file.

rydiqule.doppler_utils.apply_doppler_weights

rydiqule.doppler_utils.apply_doppler_weights(sols: ndarray, velocities: ndarray, volumes:
ndarray)→ ndarray

Calculates and applies the weight for each doppler class given unweighted solutions to doppler-shifted equations.

Works for both time-domain and stead-state solutions.

Parameters

• sols (numpy.ndarray) – The array of solutions over which to calculate weights.

• velocities (numpy.ndarray) – Array of shape (n_dim, *n_dop) where
n_dim is the number of dimensions over which doppler shifts are being considered and
*n_dop is a number of axes equal to n_dim with length equal to the number of doppler
velocity classes which are being considered. The values correspond the velocity class in
units of most probable speed.

• volumes (numpy.ndarray) – Array of shape equal to velocities. The values
correspond to the spacings between doppler classes on each axis.

Returns
The weighted solution array of shape equal to that of sols.

Return type
numpy.ndarray

Raises
ValueError – If the shapes of velocities and volumes do not match.
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rydiqule.doppler_utils.doppler_classes

rydiqule.doppler_utils.doppler_classes(method: Optional[Union[UniformMethod,
IsoPopMethod, SplitMethod, DirectMethod]] = None)
→ ndarray

Defines which velocity classes to sample for doppler averaging.

These are defined in units of the most probable speed of the Maxwell-Boltzmann distribution.

Note: To avoid issues, optical detunings should not leave densely sampled velocity classes. To avoid artifacts,
the density of points should provide >~10 points over the narrowest absorptive feature. The default is a decent
first guess, but for many problems the sampling mesh should be adjusted.

Parameters
method (dict) – Specifies method to use and any control parameters. Must contain the key
"method" with one of the following options. Each method has suboptions that also need to
be specified. Valid options are:

• "uniform": Defines a uniformly spaced, dense grid. Configuration parameters include:

– "width_doppler": Float that specifies one-sided width of gaussian distribution to
average over, in units of most probable speed. Defaults to 2.0.

– "n_uniform": Int that specifies how many points to use. Defaults to 1601.

• "isopop": Defines a grid with uniform population in each interval. This method highly
emphasises physics happening near the 0 velocity class. If stuff is happening for non-zero
velocity classes, it is likely to alias it unless n_isopop is large. See Ref1 for details.
Configuration parameters include:

– "n_isopop": Int that specifies how many points to use. Defaults to 400.

• "split": Defines a grid with a dense central spacing and wide spacing wings. This
method provides a decent compromise between uniform and isopop. It uses fewer points
than uniform, but also works well for non-zero velocity class models (like Autler-Townes
splittings). This is the default meshing method. Configuration parameters include:

– "width_doppler": Float that specifies one-sided width of coarse grided portion of
the gaussian distribution. Units are in most probable speed. Defaults to 2.0.

– "width_coherent": Float that specifies one-sided width of fine grided portion of
gaussian distribution. Units are in most probable speed. Defaults to 0.4.

– "n_doppler": Int that specifies how many points to use for the coarse grid. Note
that points of the coarse grid that fall within the fine grid are dropped. Default is 201.

– "n_coherent": Int that specifies how many points to use for the fine grid. Default
is 401.

Note: For the “split” method, a union of 2 samplings is taken, so the number of total
points will not necessary be equal to the sum of "n_coherent" and "n_doppler".

• "direct": Use the supplied 1-D numpy array to build the mesh.

– "doppler_velocities": Mandatory parameter that holds the 1-D numpy array
to use when building the mesh grids. Given in units of most probably speed.

Returns
1-D array of velocities to be sampled.

1 Andrew P. Rotunno, et. al. Inverse Transform Sampling for Efficient Doppler-Averaged Spectroscopy Simulation, AIP Advances 13, 075218
(2023) https://doi.org/10.1063/5.0157748
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Return type
numpy.ndarray

Examples

The defaults will sample more densely near the center of the distribution, (the “split” method) with a total of
561 classes.

>>> classes = rq.doppler_classes() #use the default values
>>> print(classes.shape)
(561,)

Specifying “uniform” with no additional arguments produces 1601 evenly spaced classes by default.

>>> m = {"method":"uniform"}
>>> classes = rq.doppler_classes(method=m)
>>> print(classes.shape)
(1601,)

Further specifying the number of points allows more dense or sparse sampling of the velocity distribution.

>>> m = {"method":"uniform", "n_uniform":801}
>>> classes = rq.doppler_classes(method=m)
>>> print(classes.shape)
(801,)

The “split” method also has further specifications

>>> m = {"method":"split", "n_coherent":301, "n_doppler":501}
>>> classes = rq.doppler_classes(method=m)
>>> print(classes.shape)
(701,)

References

rydiqule.doppler_utils.doppler_mesh

rydiqule.doppler_utils.doppler_mesh(doppler_velocities: ndarray, spatial_dim: int)→
Tuple[ndarray, ndarray]

Creates meshgrids of evaluation points and point “volumes” for doppler averaging.

Parameters

• dop_velocities (numpy.ndarray) – A 1-D array of velocities to evaluate over.
These should be normalized to the most probable velocity used by gaussian3d().

• spatial_dim (int) – Number of spatial dimensions to grid over.

Returns

• Vs (numpy.ndarray) – Velocity evaluation points array of shape (spatial_dim,
spatial_dim*[len(dop_vel)]).

• Vols (numpy.ndarray) – “Volume” of each meshpoint. Has same shape as Vs.
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Examples

>>> m = {"method":"uniform", "n_uniform":801}
>>> classes = rq.doppler_classes(method=m)
>>> mesh, vols = rq.doppler_mesh(classes, 2)
>>> print(type(mesh), type(vols))
>>> mesh_np = np.array(mesh)
>>> vols_np = np.array(vols)
>>> print(mesh_np.shape, vols_np.shape)
<class numpy.ndarray > <class numpy.ndarray >
(2, 801, 801) (2, 801, 801)

rydiqule.doppler_utils.gaussian3d

rydiqule.doppler_utils.gaussian3d(Vs: ndarray)→ ndarray
Evaluate a multi-dimensional gaussian for the given detunings (in units of most probable speed).

This is equivalent to a gaussian distribution with rms width 𝜎 = 1/
√
2.

Parameters
Vs (numpy.ndarray) – Array of normalized velocity classes for which to get the gaussian
weighting.

Returns
Gaussian weights for the velocity classes. Has same shape as Vs.

Return type
numpy.ndarray

rydiqule.doppler_utils.generate_doppler_shift_eom

rydiqule.doppler_utils.generate_doppler_shift_eom(doppler_hamiltonians: ndarray)→
ndarray

Generates the EOMs for the supplied doppler shifts.

Multiply the output by the velocity in each dimension, then add to the normal EOMs to get the full Doppler
shifted EOMs.

Parameters
doppler_hamiltonians (numpy.ndarray) – Hamiltonians of only the doppler
shifts, one for each spatial dimension to be averaged over.

Returns
Corresponding LHS EOMs with ground removed and in the real basis.

Return type
numpy.ndarray

rydiqule.doppler_utils.get_doppler_equations

rydiqule.doppler_utils.get_doppler_equations(base_eoms: ndarray, doppler_hamiltonians:
ndarray, Vs: ndarray)→ ndarray

Returns the equations for each slice of the doppler profile.

A new axes corresponding to these slices are appended to the beginning. For example, if equations are of shape
(m,m) and there are n_doppler doppler values being sampled, the return will be of shape (n_doppler,
m, m).

Parameters
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• base_eoms (numpy.ndarray) – Stacked square arrays representing the unshifted
equations, i.e. the theoretical equations for an ensemble of atoms with zero momentum.

• doppler_hamiltonians (numpy.ndarray) – Arrays of hamiltonians with
only doppler shifts present. One for each spatial dimension needed. See
get_doppler_shifts() for details.

• Vs (numpy.ndarray) – Mesh of velocity classes to sample, with same spatial di-
mensions as dop_ham. See doppler_mesh() for details.

Returns
An array of shape (*Vs.shape[1:], *base_eoms.shape) which is a, potentially
multi-dimensional, stack of individual equations of shape (m, m). Each slice of this stack is
an equation of shape (m, m) with the corresponding doppler shifts applied.

Return type
numpy.ndarray

Note: Each doppler shift is equal to k_i*vP*det_i, in units of Mrad/s, where i denotes the einstein
summation along the spatial dimensions. det is the normalized velocity class, with vP*det_i=v_i giving
the velocity. vP is the most probable speed from the Maxwell-Boltzmann distribution: sqrt(2*kB*T/m). k_i
is the k-vector of the field along the same axis as det_i. doppler_hamiltonians provides k_i*vP,
Vs provides det_i.

Classes

DirectMethod
IsoPopMethod
SplitMethod
UniformMethod

rydiqule.doppler_utils.DirectMethod

class rydiqule.doppler_utils.DirectMethod

Bases: TypedDict

__init__(*args, **kwargs)
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Methods

__init__(*args, **kwargs)
clear()
copy()
fromkeys([value]) Create a new dictionary with keys from iterable and

values set to value.
get(key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If the key is not found, return the default if given;

otherwise, raise a KeyError.
popitem() Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E, ]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

method
doppler_velocities

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

doppler_velocities: Union[ndarray, Sequence]

fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

method: Literal[ direct ]

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.
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update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] =
F[k]

values()→ an object providing a view on D's values

rydiqule.doppler_utils.IsoPopMethod

class rydiqule.doppler_utils.IsoPopMethod

Bases: TypedDict

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)
clear()
copy()
fromkeys([value]) Create a new dictionary with keys from iterable and

values set to value.
get(key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If the key is not found, return the default if given;

otherwise, raise a KeyError.
popitem() Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E, ]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

method
n_isopop

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D's items
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keys()→ a set-like object providing a view on D's keys

method: Literal[ isopop ]

n_isopop: int

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] =
F[k]

values()→ an object providing a view on D's values

rydiqule.doppler_utils.SplitMethod

class rydiqule.doppler_utils.SplitMethod

Bases: TypedDict

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)
clear()
copy()
fromkeys([value]) Create a new dictionary with keys from iterable and

values set to value.
get(key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If the key is not found, return the default if given;

otherwise, raise a KeyError.
popitem() Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E, ]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] =
F[k]

values()
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Attributes

method
width_doppler
n_doppler
width_coherent
n_coherent

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

method: Literal[ split ]

n_coherent: int

n_doppler: int

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] =
F[k]

values()→ an object providing a view on D's values

width_coherent: float

width_doppler: float
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rydiqule.doppler_utils.UniformMethod

class rydiqule.doppler_utils.UniformMethod

Bases: TypedDict

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)
clear()
copy()
fromkeys([value]) Create a new dictionary with keys from iterable and

values set to value.
get(key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If the key is not found, return the default if given;

otherwise, raise a KeyError.
popitem() Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E, ]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

method
width_doppler
n_uniform

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

method: Literal[ uniform ]

n_uniform: int
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pop(k[, d ])→ v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] =
F[k]

values()→ an object providing a view on D's values

width_doppler: float

6.1.4 rydiqule.experiments

Standard methods for converting results to physical values.

Functions

get_OD(*args, **kwargs) Deprecated.
get_phase_shift(*args, **kwargs) Deprecated.
get_snr(sensor, param_label[, ...]) Calculate a Sensor's signal-to-noise ratio in standard de-

viation, in a 1Hz bandwidth, to a specified signal pa-
rameter, assuming a homodyne measurement of optical
field.

get_solution_element(*args, **kwargs) Deprecated.
get_susceptibility(*args, **kwargs) Deprecated.
get_transmission_coef(*args, **kwargs) Deprecated.

rydiqule.experiments.get_OD

rydiqule.experiments.get_OD(*args, **kwargs)
Deprecated. Please use Solution.get_OD()

rydiqule.experiments.get_phase_shift

rydiqule.experiments.get_phase_shift(*args, **kwargs)
Deprecated. Please use Solution.get_phase_shift()
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rydiqule.experiments.get_snr

rydiqule.experiments.get_snr(sensor: Sensor, param_label: str, phase_quadrature: bool = False,
diff_nearest: bool = False, **kwargs)→ Tuple[ndarray, List[ndarray]]

Calculate a Sensor’s signal-to-noise ratio in standard deviation, in a 1Hz bandwidth, to a specified signal pa-
rameter, assuming a homodyne measurement of optical field.

SNR is calculated with respect to the signal parameter, relative to the inital value of the signal parameter. The
returned mesh is similarly transformed from the typical sensor mesh, by replacing the total value of the signal
parameter with the deviation in the signal parameter.

The conventions used follow that of1.

Note: The default is to return the SNR of an amplitude quadrature measurement. To convert to a power
measurement (i.e. Ω2

𝑝), the amplitude quadrature SNR must be divided by 2. To get the SNR in variance,
square the result.

Parameters

• sensor (Sensor) – sensor for which SNR should be calculated. The definition of
sensor.couplings should contain at least one coupling with a list-like parameter. For the
list-like parameter, the first array element is the “base” against which SNR for each other
value is calculated.

• param_label (str) – Label of the axis with respect to which SNR is calculated. See
Sensor.axis_labels() for more details on axis labeling. The value corresponding
to this label should be the list-like parameter with respect to which SNR should be cal-
culated. This parameter list must have at least two elements, and SNR is calculated relative
to the first element in the list for all other elements in the list.

• phase_quadrature (bool, optional) – Whether the sensor is measured in the phase
quadrature of the probe laser. False denotes measurement in the amplitude quadrature.
Default is False.

• diff_nearest (bool, optional) – Controls method by which the SNR is cal-
culated. The default (False) calculates the SNR with respect to the 0 index value. Setting
True calculates the SNR with respect to nearest neighbor differences.

• kwargs (dict, optional) – Additional keyword arguments to pass to rq.
solve_steady_state().

Returns

• snrs (numpy.ndarray) – Array of SNRs for the sensor with respect to the change in the
signal parameter. Calculated in units of amplitude relative to noise standard deviation.
SNR referenced to 1 second BW.

• mesh (tuple(numpy.ndarray)) – Numpy meshgrid of the coupling parameters that yield
each snr. The signal parameter axis now shows the signal change.

Raises
ValueError – If the specified param_label is not in Sensor.axis_labels()

1 D. H. Meyer, C. O’Brien, D. P. Fahey, K. C. Cox, and P. D. Kunz, “Optimal atomic quantum sensing using
electromagnetically-induced-transparency readout,” Phys. Rev. A, vol. 104, p. 043103, 2021.

6.1. rydiqule 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError


rydiqule, Release 1.2.2

Examples

>>> c = rq.Sensor( Rb85 , *rq.D2_states( Rb85 ))
>>> c.add_coupling(states=(0,1), rabi_frequency=np.linspace(1e-6, 1, 5),␣
→˓detuning=1)
>>> snr, mesh = rq.get_snr(c, 0.01, (0,1)_rabi_frequency )
>>> print(snr)
>>> print(mesh)
[ 0. 3422.56 6843.41 10260.86 13673.19]
[array([0., 0.25, 0.50, 0.75, 1.])]

References

rydiqule.experiments.get_solution_element

rydiqule.experiments.get_solution_element(*args, **kwargs)
Deprecated. Please use Solution.get_solution_element().

rydiqule.experiments.get_susceptibility

rydiqule.experiments.get_susceptibility(*args, **kwargs)
Deprecated. Please use Solution.get_susceptibility()

rydiqule.experiments.get_transmission_coef

rydiqule.experiments.get_transmission_coef(*args, **kwargs)
Deprecated. Please use Solution.get_transmission_coef().

6.1.5 rydiqule.rydiqule_utils

General rydiqule package utilities

Functions

about([obscure_paths]) About box describing Rydiqule and its core depen-
dencies.

rydiqule.rydiqule_utils.about

rydiqule.rydiqule_utils.about(obscure_paths: bool = True)
About box describing Rydiqule and its core dependencies.

Prints human readable strings of information about the system.

Parameters
obscure_paths (bool, optional) – Remove user directory from printed paths. De-
fault is True.
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Examples

>>> import rydiqule as rq
>>> rq.about()

Rydiqule
================

Rydiqule Version: 0.4.0
Installation Path: C:\~\rydiqule\src\rydiqule

Dependencies
================

NumPy Version: 1.21.5
SciPy Version: 1.7.3
Matplotlib Version: 3.5.2
ARC Version: 3.2.1
Python Version: 3.9.12
Python Install Path: C:\~\miniconda3\envs\arc
Platform Info: Windows (AMD64)
CPU Count: 16
Total System Memory: 256 GB

6.1.6 rydiqule.sensor

Sensor objects that control solvers.

Module Attributes

BASE_SCANNABLE_KEYS Reference list of all coherent coupling keys that support
rydiqules stacking convention.

BASE_EDGE_KEYS Reference list of all keys that can be specified with val-
ues in a coherenct coupling.

rydiqule.sensor.BASE_SCANNABLE_KEYS

rydiqule.sensor.BASE_SCANNABLE_KEYS = [ detuning , rabi_frequency ,
phase , transition_frequency , e_shift ]

Reference list of all coherent coupling keys that support rydiqules stacking convention. Note that all deco-
herence keys (keys beginning with gamma_) are supported, but handled separately.

rydiqule.sensor.BASE_EDGE_KEYS

rydiqule.sensor.BASE_EDGE_KEYS = [ states , detuning , rabi_frequency ,
transition_frequency , phase , kvec , time_dependence , label ,
dipole_moment ]

Reference list of all keys that can be specifiedwith values in a coherenct coupling. Subclasses which inherit from
Sensor should override the valid_parameters attribute, NOT this list. The valid_parameters
attribute is initialized as a copy of BASE_EDGE_KEYS.
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Classes

Sensor(basis, *couplings) Class that contains minimum information necessary to
run the solvers.

rydiqule.sensor.Sensor

class rydiqule.sensor.Sensor(basis: Union[int, List[Union[int, str]]], *couplings: Dict)
Bases: object

Class that contains minimum information necessary to run the solvers.

Consider this class the theorist’s interface to the solvers. It requires nearly complete, explicit specification of
inputs. This allows for very fine control of the solvers, including the ability to solve systems that are not entirely
physical.

__init__(basis: Union[int, List[Union[int, str]]], *couplings: Dict)→ None
Initializes the Sensor with the specified basis .

Can be specified as either an integer number of states (which will automatically label the states [0,..
.,basis_size]) or list of state labels.

Parameters

• basis (int or list of int, str) – The specification of the basis size and
labelling for a new Sensor. Can be specified by either a integer or a list. If specified
as an integer n, the created Sensor will have n states labelled as 0,...n. In the case
of a list, a number of states equal to the length of the list will be created in the sensor,
indexed by the integer or string values of the nodes.

• *couplings (tuple(dict)) – Couplings dictionaries to pass to add_cou-
plings() on sensor construction.

Raises

• TypeError – If basis is not an integer or iterable.

• TypeError – If any of the state label specifications of basis are the wrong type.

Examples

Providing an integer will define a sensor with the given basis size, labelled with ascending integers.

>>> s = rq.Sensor(3)
>>> print(s.states)
[0, 1, 2]

States can also be defined with a list of integers:

>>> s = rq.Sensor([0, 1, 2])
>>> print(s.states)
[0, 1, 2]

States can also be strings

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> print(s.states)
[ g , e1 , e2 ]

Using None in a list will default to using the integer correspoinding to the state:
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>>> s = rq.Sensor([ g , None, None])
>>> print(s.states)
[ g , 1, 2]

Methods

__init__(basis, *couplings) Initializes the Sensor with the specified basis .
add_coupling(states[, rabi_frequency, ...]) Adds a single coupling of states to the system.
add_couplings(*couplings, **extra_kwargs) Add any number of couplings between pairs of

states.
add_decoherence(states, gamma[, label]) Add decoherent coupling to the graph between two

states.
add_energy_shift(state, shift) Add an energy shift to a state.
add_energy_shifts(shifts) Add multiple energy shifts to different nodes.
add_self_broadening(node, gamma[, la-
bel])

Specify self-broadening (such as collisional broad-
ening) of a level.

add_transit_broadening(gamma_transit[,
...])

Adds transit broadening by adding a decoherence
from each node to ground.

axis_labels([collapse, full_labels]) Get a list of axis labels for stacked hamiltonians.
couplings_with(*keys[, method]) Returns a version of self.couplings with only the

keys specified.
decoherence_matrix() Build a decoherence matrix out of the decoherence

terms of the graph.
dm_basis() Generate basis labels of density matrix components.
get_coupling_rabi([coupling_tuple]) Helper function that returns the Rabi frequency of

the coupling from a Sensor for use in functions that
return experimental values.

get_couplings() Returns the couplings of the system as a dictionary
get_doppler_shifts() Returns the Hamiltonian with only detunings set to

the kvector values for each spatial dimension.
get_hamiltonian() Creates the Hamiltonians from the couplings defined

by the fields.
get_hamiltonian_diagonal(values[,
no_stack])

Apply addition and subtraction logic corresponding
to the direction of the couplings.

get_parameter_mesh() Returns the parameter mesh of the sensor.
get_rotating_frames() Determines the rotating frames for the disconnected

subgraphs.
get_time_couplings() Returns the list of matrices of all couplings in the

system defined with a time_dependence key.
get_time_dependence() Function which returns a list of the time_depen-

dence functions.
get_time_hamiltonians() Get the hamiltonians for the time solver.
get_transition_frequencies() Gets an array of the diagonal elements of the Hamil-

tonian from the field detunings.
get_value_dictionary(key) Get subset of dictionary coupling parameters.
set_experiment_values(probe_tuple, ...[,
...])

Sets attributes needed for observable calculations.

set_gamma_matrix(gamma_matrix) Set the decoherence matrix for the system.
spatial_dim() Returns the number of spatial dimensions doppler

averaging will occur over.
states_with_label(label) Return a dict of all states with a label matching a

given regular expression (regex) pattern.
unzip_parameters(zip_label[, verbose]) Remove a set of zipped parameters from the internal

zipped_parameters list.
continues on next page
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Table 6.2 – continued from previous page
variable_parameters([apply_mesh]) Property to retrieve the values of parameters that

were stored on the graph as arrays.
zip_parameters(*parameters[, zip_label]) Define 2 scannable parameters as "zipped" so they

are scanned in parallel.

Attributes

basis_size Property to return the number of nodes on the Sen-
sor graph.

beam_area Cross-sectional area of the probing beam, in square
meters.

cell_length Optical path length of the medium, in meters.
eta Noise density prefactor, in units of root(Hz).
kappa Differential prefactor, in units of (rad/s)/m.
probe_freq Probing transition frequency, in rad/s.
probe_tuple Coupling edge that corresponds to the probing field.
states Property which gets a list of labels for the sensor in

the order defined in __init__().

_add_coupling(states: Tuple[Union[int, str], Union[int, str]], **field_params)→ None
Function for internal use which will ensure the supplied couplings is valid, add the field to self.couplings.

Exists to abstract away some of the internally necessary bookkeeping functionality from user-facing
classes.

Parameters

• states (tuple) – The integer pair of states to be coupled.

• **field_params (dict) – The dictionry of couplings parameters. For details on
the keys of the dictionry see add_coupling().

_collapse_mesh(mesh)
Collapses the given mesh using rydiqule logic for parameter zipping.

Expected to be given a mesh which is generated by applying numpy.meshgrid function on the output
of variable_parameters() for the system. Given such a mesh, ensures that output mesh matches
the shape expected by rydiqule’s stacking convention, meaning that parameters that are zipped together
will share an axis in the hamiltonian stack.

Parameters
mesh (tuple(numpy.ndarray)) – The uncollapsed meshgid of parameters for the
system. Typically the output of numpy.meshgrid called on variable_parame-
ters().

Returns
The collapsed meshgid with zipped parameters sharing and axis.

Return type
tuple(np.ndarray)

_coupling_with_label(label: str)→ Tuple[Union[int, str], Union[int, str]]
Helper function to return the pair of states corresponding to a particular label string. For internal use.

_remove_edge_data(states: Tuple[Union[int, str], Union[int, str]], kind: str)
Helper function to remove all data that was added with a add_coupling() call or add_decoher-
ence() call. Needed to ensure that two nodes do not have coherent couplings pointing both ways and
to invalidate existing zip parameter couplings.

Parameters
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• states (tuple) – Edge from which to remove data.

• kind (str) – What type of data to remove. Valid options are coherent coherent
couplings or the incoherent key to be cleared (must start with gamma).

Raises
ValueError – If kind is not coherent and doesn’t begin with gamma

_stack_shape(time_dependence: Literal['steady', 'time', 'all'] = 'all')→ Tuple[int, ...]
Internal function to get the shape of the tuple preceding the two hamiltonian axes in get_hamilto-
nian()

_states_valid(states: Sequence)→ Tuple[Union[int, str], Union[int, str]]
Confirms that the provided states are in a valid format.

Typically used internally to validate states added. If provided as a form other than a tuple, first casts to a
tuple for consistent indexing.

Checks that states contains 2 elements, can be interpreted as a tuple, and that both states lie inside
the basis.

Parameters
states (iterable) – iterable of to validate. Should be a pair of integers that can be
cast to a tuple.

Returns
Length 2 tuple of validated state labels.

Return type
tuple

Raises

• ValueError – If states has more than two elements.

• TypeError – If states cannot be converted to a tuple.

• ValueError – If either state in states is outside the basis.

add_coupling(states: Tuple[Union[int, str], Union[int, str]], rabi_frequency: Optional[Union[float,
List[float], ndarray]] = None, detuning: Optional[Union[float, List[float], ndarray]] =
None, transition_frequency: Optional[float] = None, phase: Union[float, List[float],
ndarray] = 0, kvec: Tuple[float, float, float] = (0, 0, 0), time_dependence:
Optional[Callable[[float], float]] = None, label: Optional[str] = None, **extra_kwargs)
→ None

Adds a single coupling of states to the system.

One or more of these paramters can be a list or array-like of values to represent a laser that can take on a
set of discrete values during a field scan. Designed to be a user-facing wrapper for _add_coupling()
with arguments for states and coupling parameters.

Parameters

• states (tuple of ints or strings of length 2) – The pair of states
of the sensor which the state couples. Must be a tuple of length 2, where each element
is a string or integer corresponding to a state in the Sensor as defined in the constructor.
Tuple order indicates which state to has higher energy; the second state is always assumed
to have higher energy.

• rabi_frequency (float or complex, or list-like of float or
complex) – The rabi frequency of the field being added. Defined in units of Mrad/s.
List-like values will invoke Rydiqule’s stacking convention when relevant quantities are
calculated.

• detuning (float or list-like of floats, optional) – The frequency
difference between the transition frequency and the field frequency in units of Mrad/s.
List-like values will invoke Rydiqule’s stacking convention when relevant quantities are
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calculated. If specified, the coupling is treated with the rotating-wave approximation
rather than in the lab frame, and transition_frequency is ignored if present. A
positive number always indicates a blue detuning, and a negative number indicates a blue
detuning.

• transition_frequency (float or list-like of floats, op-
tional) – The transition frequency between a particular pair of states. Must be a
positive number. List-like values will invoke Rydiqule’s stacking convention when rel-
evant quantities are calculated. Only used directly in calculations ifdetuning isNone,
ignored otherwise. Note that on its own, it only defines the spacing between two energy
levels and not the field itsself. To define a field, the time_dependence argument
must be specified, or else the off-diagonal terms to drive transitions will not be gener-
ated in the Hamiltonian matrix.

• phase (float, optional) – The relative phase of the field in radians. Defaults to
zero.

• kvec (iterable, optional) – A three-element iterable that defines the atomic
doppler shift on a particular coupling field. It should have magntiude equal to the
doppler shift (in the units of Mrad/s) of a n atom moving at the Maxwell-Boltzmann
distribution most probable speed, vP=np.sqrt(2*kB*T/m). I.E. np.linalg.
norm(kvec)=2*np.pi/lambda*vP. If equal to (0,0,0), solvers will ignore
doppler shifts on this field. Defaults to (0,0,0).

• time_dependence (scalar function, optional) – A scalar function spec-
ifying a time-dependent field. The time dependence function is defined as a python fun-
tion that returns a unitless value as a function of time (in microseconds) that is multiplied
by the rabi_frequency parameter to get a field strength scaled to units of Mrad/s.

• label (str or None, optional) – Name of the coupling. This does not change
any calculations, but can be used to help track individual couplings, and will be reflected
in the output of axis_labels(), and to specify zipping for zip_couplings().
If None, the label is generated as the value of states cast to a string with whitespace
removed. Defaults to None.

Raises

• ValueError – If states cannot be interpreted as a tuple.

• ValueError – If states does not have a length of 2.

• ValueError – If the state numbers specified by states are beyond the basis size.
For example, calling this function with states=(3,4)will raise this error if the basis
size is equal to 3.

• ValueError – If both rabi_frequency and dipole_moment are specified or
if neither are specified.

• ValueError – If both detuning and transition_frequency are specified or if neither
are specified.

Examples

>>> s = rq.Sensor(2)
>>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=2)

>>> s = rq.Sensor([ g , e ])
>>> s.add_coupling(( g , e ), detuning=1, rabi_frequency=1)

>>> s = rq.Sensor(2)
>>> s.add_coupling(states=(0,1), detuning=np.linspace(-10, 10, 101), rabi_
→˓frequency=2, label="laser")
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>>> s = rq.Sensor(2)
>>> step = lambda t: 1 if t>=1 else 0
>>> s.add_coupling(states=(0,1), transition_frequency=1000, rabi_
→˓frequency=2, time_dependence=step)

>>> s = rq.Sensor(2)
>>> kp = 250*np.array([1,0,0])
>>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=2, kvec=kp)

add_couplings(*couplings: Dict, **extra_kwargs)→ None
Add any number of couplings between pairs of states.

Acts as an alternative to calling add_coupling() individually for each pair of states. Can be used
interchangably up to preference, and all of keyword add_coupling() are supported dictionary keys
for dictionaries passed to this function.

Parameters

• couplings (tuple of dicts) – Any number of dictionaries, each specifying the
parameters of a single field coupling 2 states. For more details on the keys of each dic-
tionry see the arguments for add_coupling(). Equivalent to passing each dictiories
keys and values to add_coupling() individually.

• **extra_kwargs (dict) – Additional keyword-only arguments to pass to the rel-
evant add_coupling method. The same arguments will be passed to each call of
add_coupling(). Often used for warning suppression.

Raises
ValueError – If the states parameter is missing.

Examples

>>> s = rq.Sensor(3)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":2}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":4}
>>> s.add_couplings(blue, red)
>>> print(s.couplings.edges(data=True))
[(0, 1, { rabi_frequency : 1, detuning : 2, phase : 0, kvec : (0, 0, 0)}
→˓),
(1, 2, { rabi_frequency : 3, detuning : 4, phase : 0, kvec : (0, 0, 0)}
→˓)]

add_decoherence(states: Tuple[Union[int, str], Union[int, str]], gamma: Union[float, List[float],
ndarray], label: Optional[str] = None)

Add decoherent coupling to the graph between two states.

If gamma is list-like, the sensor will scan over the values, solving the system for each different gamma,
identically to the scannable parameters in coherent couplings.

Parameters

• states (tuple of ints) – Length-2 tuple of integers corresponding to the two
states. The first value is the number of state out of which population decays, and the
second is the number of the state into which population decays.

• gamma (float or sequence) – The decay rate, in Mrad/s.

• label (str or None, optional) – Optional label for the decay. If None,
decay will be stored on the graph edge as "gamma". Otherwise, will cast as a string and
decay will be stored on the graph edge as "gamma_"+label.
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Notes

Note: Adding a decoherece with a particular label (including None) will override an existing decoherent
transition with that label.

Examples

s = rq.Sensor(3) >>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=1) >>> s.add_cou-
pling(states=(1,2), detuning=1, rabi_frequency=1) >>> s.add_decoherence((2,0), 0.1, label=”misc”)
>>> print(s.decoherence_matrix()) [[0. 0. 0. ] [0. 0. 0. ] [0.1 0. 0. ]]

Decoherence values can also be scanned. Here decoherece from states 2->0 is scanned between 0 and 0.5
for 11 values. We can also see how theHamiltonian shape accounts for this to allow for clean broadcasting,
indicating that the hamiltonian is identical accross all decoherence values.

>>> s = rq.Sensor(3)
>>> gamma = np.linspace(0,0.5,11)
>>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=1)
>>> s.add_coupling(states=(1,2), detuning=1, rabi_frequency=1)
>>> s.add_decoherence((2,0), gamma)
>>> print(s.decoherence_matrix().shape)
(11, 3, 3)
>>> print(s.get_hamiltonian().shape)
(11, 3, 3)

add_energy_shift(state: Union[int, str], shift: Union[float, List[float], ndarray])
Add an energy shift to a state.

First perfoms validation that the provided state is actually a node in the graph, then adds the shift
specified by shift to a self-loop edge keyed with "e_shift". This value will be added to the corre-
sponding diagonal term when the hamiltonian is generated. If the provided node

Parameters

• state (str or int) – The label corresponding to the atomic state to which the shift
will be added.

• shift (float or list-like of float) – The magnitude of the energy shift,
in Mrad/s

Raises
KeyError – If the supplied state is not in the system.

add_energy_shifts(shifts: dict)
Add multiple energy shifts to different nodes.

Shifts are specified with the shifts dictionary, which is keyed with states and has values correspond-
ing to the energy shift applied to the state in Mrad/s. Error handling and validation is done with the
add_energy_shift() function.

Parameters
shifts (dict) – Dictionary keyed with states with values corresponding to the energy
shift, in Mrad/s, of the corresponding state.

add_self_broadening(node: int, gamma: Union[float, List[float], ndarray], label: str = 'self')
Specify self-broadening (such as collisional broadening) of a level.

Equivalent to calling add_decoherence() and specifying both states to be the same, with the “self”
label. For more complicated systems, it may be useful to further specify the source of self-broadening
as, for example, “collisional” for easier bookkeeping and to ensure no values are overwritten.

Parameters
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• node (int) – The integer number of the state node to which the broadening will be
added. The integer corresponds to the state’s position in the graph.

• gamma (float or sequence) – The broadening width to be added in Mrad/s.

• label (str, optional) – Optional label for the state. If None, decay will be
stored on the graph edge as "gamma". Otherwise, will cast as a string and decay will
be stored on the graph edge as "gamma_"+label

Notes

Note: Just as with the add_decoherence() function, adding a decoherence value with a label that
already exists will overwrite an existing decoherent transition with that label. The “self” label is applied
to this function automatically to help avoid an unwanted overwrite.

Examples

>>> s = rq.Sensor(3)
>>> s.add_self_broadening(1, 0.1)
>>> print(s.couplings.edges(data=True))
>>> print(s.decoherence_matrix())
[(1, 1, { gamma_self : 0.1, label : (1,1) })]
[[0. 0. 0. ]
[0. 0.1 0. ]
[0. 0. 0. ]]

add_transit_broadening(gamma_transit: Union[float, List[float], ndarray], repop: Union[None,
Dict[Union[int, str], float]] = None, label: str = 'transit')→ None

Adds transit broadening by adding a decoherence from each node to ground.

For each graph node n, adds a decoherent transition from n the specified state (0 by default) using the
add_decoherence()method with the "transit" label. See add_decoherence() for more
details on labeling.

If an array of transit values are provided, they will be automatically zipped together into a single scanning
element.

Parameters

• gamma_transit (float or sequence) – The transit broadening rate inMrad/s.

• repop (dict, optional) – Dictionary of states for transit to repopulate in to.
The keys represent the state labels. The values represent the fractional amount that goes
to that state. If the sum of values does not equal 1, population will not be conserved.
Default is to repopulate everything into the ground state (either state 0 or the first state
in the basis passed to the __init__() method).

Warns

• If the values of the `repop` parameter do not sum to 1, thus meaning

• population will not be conserved.
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Examples

>>> s = rq.Sensor(3)
>>> s.add_transit_broadening(0.1)
>>> print(s.couplings.edges(data=True))
>>> print(s.decoherence_matrix())
[(0, 0, { gamma_transit : 0.1}), (1, 0, { gamma_transit : 0.1}), (2, 0, {
→˓ gamma_transit : 0.1})]
[[0.1 0. 0. ]
[0.1 0. 0. ]
[0.1 0. 0. ]]

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> repop = { g :0.75, e1 : 0.25}
>>> s.add_transit_broadening(0.2, repop=repop)
>>> print(s.decoherence_matrix())
[[0.15 0.05 0. ]
[0.15 0.05 0. ]
[0.15 0.05 0. ]]

axis_labels(collapse: bool = True, full_labels: bool = False)→ List[str]
Get a list of axis labels for stacked hamiltonians.

The axes of a hamiltonian stack are defined as the axes preceding the usual hamiltonian, which are always
the last 2. These axes only exist if one of the parametes used to define a Hamiltonian are lists.

Be default, labels which have been zipped using zip_parameters() will be combined into a single
label, as this is how get_hamiltonian() treats these axes.

The ordering of axis labels is

Returns
Strings corresponding to the label of each axis on a stack of multiple hamiltonians.

Return type
list of str

Examples

There are no preceding axes if there are no list-like parameters.

>>> s = rq.Sensor(3)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":2}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":4}
>>> s.add_couplings(blue, red)
>>> print(s.get_hamiltonian().shape())
>>> print(s.axis_labels())
(3,3)
[]

Adding list-like parameters expands the hamiltonian

>>> s = rq.Sensor(3)
>>> det = np.linspace(-10, 10, 11)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":det, "label":
→˓"blue"}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":det}
>>> s.add_couplings(blue, red)
>>> print(s.get_hamiltonian().shape)
>>> print(s.axis_labels())
(11, 11, 3, 3)
[ blue_detuning , (1, 2)_detuning ]
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The ordering of labels may change if string state names are used. The ordering is determined by the
output of the variable_parameters() method. See method documentation for more detail.

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> det = np.linspace(-10, 10, 11)
>>> blue = {"states":( g , e1 ), "rabi_frequency":1, "detuning":det, "label
→˓":"blue"}
>>> red = {"states":( e1 , e2 ), "rabi_frequency":3, "detuning":det}
>>> s.add_couplings(blue, red)
>>> print(s.get_hamiltonian().shape)
>>> print(s.axis_labels())
(11, 11, 3, 3)
["( e1 , e2 )_detuning", blue_detuning ]

Zipping parameters combines their corresponding labels, since their Hamiltonians now lie on a single axis
of the stack. Here the axis of length 7 (axis 0) corresponds to the rabi frequencies and the axis of shape
11 (axis 1) corresponds to the zipped detunings

>>> s = rq.Sensor(3)
>>> s.add_coupling(states=(0,1), detuning=np.arange(11), rabi_frequency=np.
→˓linspace(-3, 3, 7))
>>> s.add_coupling(states=(1,2), detuning=0.5*np.arange(11), rabi_
→˓frequency=1)
>>> s.zip_parameters("(0,1)_detuning", "(1,2)_detuning", zip_label=
→˓"detunings")
>>> print(s.get_hamiltonian().shape)
>>> print(s.axis_labels())
>>> print(s.axsi_labels(full_labels=True))
(7, 11, 3, 3)
[ (0,1)_rabi_frequency , detunings ]
[ (0,1)_rabi_frequency , (0,1)_detuning|(1,2)_detuning ]

property basis_size

Property to return the number of nodes on the Sensor graph.

Returns
The number of nodes on the graph, corresponding to the basis size for the system.

Return type
int

beam_area: Optional[float] = None

Cross-sectional area of the probing beam, in square meters.

cell_length: Optional[float] = None

Optical path length of the medium, in meters.

couplings_with(*keys: str, method: Literal['all', 'any', 'not any'] = 'all')→ Dict[Tuple[Union[int, str],
Union[int, str]], Dict]

Returns a version of self.couplings with only the keys specified.

Can be specified with a several criteria, including all, none, or any of the keys specified.

Parameters

• str) (keys(tuple of) – parameter names for a state. See add_coupling()
for which names are valid for a Sensor object.

• method ({ all , any , not any }) – Method to see if a given field
matches the keys given. Choosing “all” will return couplings which have keys
matching all of the values provided in the keys argument, while coosing “any”,
will return all couplings with keys matching at least one of the values specified
by keys. For example, sensor.couplings_with("rabi_frequency")
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returns a dictionary of all couplings for which a rabi_frequency was spec-
ified. sensor.couplings_with("rabi_frequency", "detuning",
method="all") returns all couplings for which both rabi_frequency and detuning
are specified. ‘sensor.couplings_with(“rabi_frequency”, “detuning”, method=”any”)` re-
turns all couplings for which either rabi_frequency or detuning are specified. Defaults to
“all”.

Returns
A copy of the sensor.couplings dictionary with only couplings containing the spec-
ified parameter keys.

Return type
dict

Examples

Can be used, for example, to return couplings in the roating wave approximation.

>>> s = rq.Sensor(3)
>>> sinusoid = lambda t: 0 if t<1 else sin(100*t)
>>> f2 = {"states": (0,1), "detuning": 1, "rabi_frequency":2}
>>> f1 = {"states": (1,2), "transition_frequency":100, "rabi_frequency":1,
→˓"time_dependence": sinusoid}
>>> s.add_couplings(f1, f2)
>>> gamma = np.array([[.2,0,0],
... [.1,0,0],
... [0.05,0,0]])
>>> s.set_gamma_matrix(gamma)
>>> print(s.couplings_with("detuning"))
{(0, 1): { rabi_frequency : 2, detuning : 1, phase : 0, kvec : (0, 0,␣
→˓0), no_rwa_warning : False, label : (0,1) }}

decoherence_matrix()→ ndarray
Build a decoherence matrix out of the decoherence terms of the graph.

For each edge, sums all parameters with a key that begins with “gamma”, and places it on the appropriate
location in an adjacency matrix for the couplings graph.

Returns
The decoherence matrix stack of the system.

Return type
numpy.ndarray

Examples

>>> s = rq.Sensor(3)
>>> s.add_decoherence((1,0), 0.2, label="foo")
>>> s.add_decoherence((1,0), 0.1, label="bar")
>>> s.add_decoherence((2,0), 0.05)
>>> s.add_decoherence((2,1), 0.05)
>>> print(s.couplings.edges(data=True))
>>> print(s.decoherence_matrix())
[(1, 0, { gamma_foo : 0.2, label : (1,0) , gamma_bar : 0.1}), (2, 0, {
→˓ gamma : 0.05, label : (2,0) }), (2, 1, { gamma : 0.05, label : (2,1)
→˓ })]
[[0. 0. 0. ]
[0.3 0. 0. ]
[0.05 0.05 0. ]]

Decoherences can be stacked just like any parameters of the Hamiltonian:
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>>> s = rq.Sensor(3)
>>> gamma = np.linspace(0,0.5, 11)
>>> s.add_decoherence((1,0), gamma)
>>> print(s.decoherence_matrix().shape)
(11,3,3)

Defining decoherences between states labelled with string values works just like coherent couplings:

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> s.add_decoherence(( e1 , g ), 0.1)
>>> s.add_decoherence(( e2 , g ),0.1)
>>> s.decoherence_matrix()
array([[0. , 0. , 0. ],

[0.1, 0. , 0. ],
[0.1, 0. , 0. ]])

dm_basis()→ ndarray
Generate basis labels of density matrix components.

The basis corresponds to the elements in the solution. This is not the complex basis of the sensor class, but
rather the real basis of a solution after calling one of rydiqule’s solvers. This means that the ground
state population has been removed and it has been transformed to the real basis.

Returns
Array of string labels corresponding to the solving basis. Is a 1-D array of length n**2-1.

Return type
numpy.ndarray

Examples

>>> s = rq.Sensor(3)
>>> print(s.basis())
[ 01_real 02_real 01_imag 11_real 12_real 02_imag 12_imag
22_real ]

eta: Optional[float] = None

Noise density prefactor, in units of root(Hz). Must be specified when using Sensor. Automatically
calculated when using Cell.

get_coupling_rabi(coupling_tuple: Tuple[Union[int, str], Union[int, str]] = (0, 1))→ Union[float,
ndarray]

Helper function that returns the Rabi frequency of the coupling from a Sensor for use in functions that
return experimental values.

Parameters
coupling_tuple (tuple of int) – The tuple that defines the coupling to extract
to rabi frequencies from

Returns
Rabi frequency defined in the Sensor

Return type
float of numpy.ndarray

Warns
UserWarning – If the coupling has time dependence. In this case, the returned Rabi
frequency may not be well defined.
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get_couplings()→ Dict[Tuple[Union[int, str], Union[int, str]], Dict]
Returns the couplings of the system as a dictionary

Deprecating in favor of calling the couplings.edges attribute directly.

Returns
A dictionary of key-value pairs with the keys corresponding to levels of transition, and the
values being dictionaries of coupling attributes.

Return type
dict

get_doppler_shifts()→ ndarray
Returns the Hamiltonian with only detunings set to the kvector values for each spatial dimension.

Determining if a float should be treated as zero is done using numpy.isclose, which has default
absolute tolerance of 1e-08.

Returns
Array of shape (used_spatial_dim,n,n), Hamiltonians with only the doppler shifts present
along each non-zero spatial dimension specified by the fields’ “kvec” parameter.

Return type
numpy.ndarray

get_hamiltonian()→ ndarray
Creates the Hamiltonians from the couplings defined by the fields.

They will only be the steady state hamiltonians, i.e. will only contain terms which do not vary with time.
Implicitly creates hamiltonians in “stacks” by creating a grid of all supported coupling parameters which
are lists. This grid of parameters will not contain rabi-frequency parameters which vary with time and
are defined as list-like. Rather, the associated axis will be of length 1, with the scanning over this value
handled by the get_time_couplings() function.

For m list-like parameters x1,x2,…,xm with shapes N1,N2,…,Nm, and basis size n, the output will
be shape (N1,N2,...,Nm, n, n). The dimensions N1,N2,…Nm are labeled by the output of
axis_labels().

If any parameters have been zipped with the _zip_parameters() method, those parameters will
share an axis in the final hamiltonian stack. In this case, if axis N1 and N2 above are the same shape and
zipped, the final Hamiltonian will be of shape (N1,...,Nm, n, n).

In the case where the basis of the Sensor was explicitly defined with a list of states, the ordering of
rows and coulumns in the hamiltonian corresponds to the ordering of states passed in the basis.

See rydiqule’s conventions for matrix stacking for more details.

Returns
The complex hamiltonian stack for the sensor.

Return type
np.ndarray

Examples

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> blue = {"states":(0,1), "rabi_frequency":1, "detuning":det}
>>> red = {"states":(1,2), "rabi_frequency":3, "detuning":det}
>>> s.add_couplings(red, blue)
>>> print(s.get_hamiltonian().shape)
(11, 11, 3, 3)

Time dependent couplings are handled separately. The axis that contains array-like parameters with time
dependence is length 1 in the steady-state Hamiltonian.
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>>> s = rq.Sensor(3)
>>> rabi = np.linspace(-1,1,11)
>>> step = lambda t: 0 if t<1 else 1
>>> blue = {"states":(0,1), "rabi_frequency":rabi, "detuning":1}
>>> red = {"states":(1,2), "rabi_frequency":rabi, "detuning":0, time_
→˓dependence : step}
>>> s.add_couplings(red, blue)
>>> print(s.get_hamiltonian().shape)
(11, 1, 3, 3)

Zipping parameters means they share an axis in the Hamiltonian.

>>> s = rq.Sensor(3)
>>> s.add_coupling(states=(0,1), detuning=np.arange(11), rabi_frequency=2)
>>> s.add_coupling(states=(1,2), detuning=0.5*np.arange(11), rabi_
→˓frequency=1)
>>> s.zip_parameters("(0,1)_detuning", "(1,2)_detuning")
>>> H = s.get_hamiltonian()
>>> print(H.shape)
(11, 3, 3)

If the basis is provided as a list of string labels, the ordering of Hamiltonian rows And columns will
correspond to the order of states provided.

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> s.add_coupling(( g , e1 ), detuning=1, rabi_frequency=1)
>>> s.add_coupling(( e1 , e2 ), detuning=1.5, rabi_frequency=1)
>>> print(s.get_hamiltonian())
[[ 0. +0.j 0.5+0.j 0. +0.j]
[ 0.5-0.j -1. +0.j 0.5+0.j]
[ 0. +0.j 0.5-0.j -2.5+0.j]]

get_hamiltonian_diagonal(values: dict, no_stack: bool = False)→ ndarray
Apply addition and subtraction logic corresponding to the direction of the couplings.

For a given state n, the path from ground will be traced to n. For each edge along this path, values will
be added where the path direction and coupling direction match, and subtracting values where they do
not. The sum of all such values along the path is the n th term in the output array.

Primarily for internal functions which help generate hamiltonians. Most commonly used to calculate total
detunings for ranges of couplings under the RWA

Parameters

• values (dict) – Key-value pairs where the keys correspond to transitions (agnostic
to ordering of states) and values corresponding to the values to which the logic will be
applied.

• no_stack (bool, optional) – Whether to ignore variable parameters in the sys-
tem and use only basic math operations rather than reshape the output. Typically only
True for calculating doppler shifts.

Returns
The digonal of the hamiltonian of the system of shape (*l,n), where l is the shape of
the hamiltonian stack for the sensor.

Return type
numpy.ndarray

get_parameter_mesh()→ List[ndarray]
Returns the parameter mesh of the sensor.

The parameter mesh is the flattened grid of variable parameters in all the couplings of a sensor. Wraps
numpy.meshgrid with the indexing argument always "ij" for matrix indexing.

6.1. rydiqule 109

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray


rydiqule, Release 1.2.2

Returns
list of mesh grids for every variable parameter

Return type
list of numpy.ndarray

Examples

>>> s = rq.Sensor(3)
>>> rabi1 = np.linspace(-1,1,11)
>>> rabi2 = np.linspace(-2,2,21)
>>> s.add_coupling(states=(0,1), rabi_frequency=rabi1, detuning=1)
>>> s.add_coupling(states=(1,2), rabi_frequency=rabi2, detuning=1)
>>> for p in s.get_parameter_mesh():
... print(p.shape)
(11, 1)
(1, 21)

get_rotating_frames()→ dict
Determines the rotating frames for the disconnected subgraphs.

Each returned path gives the states traversed, and the sign gives the direction of the coupling. If the sign
is negative, the coupling is going to a lower energy state. Choice of frame depends on graph distance to
lowest indexed node on subgraph, ties broken by lowest indexed path traversed first.

Returns
Dictionary keyed by disconnected subgraphs, values are path dictionaries for each node of
the subgraph. Each path shows the node indexes traversed, where a negative sign denotes
a transition to a lower energy state.

Return type
dict

get_time_couplings()→ Tuple[List[ndarray], List[ndarray]]
Returns the list of matrices of all couplings in the system defined with a time_dependence key.

The ouput will be two lists of matricies representing which terms of the hamiltonian are dependent on
each time-dependent coupling. The lists will be of length M and shape (*l_time, n, n), where M
is the number of time-dependent couplings, l_time is time-dependent stack shape (possibly all ones),
and n is the basis size. Each matrix will have terms equal to the rabi frequency (or half the rabi frequency
under RWA) in positions that correspond to the associated transition. For example, in the case where
there is a time_dependence function defined for the (2,3) transition with a rabi frequency of 1,
the associated time coupling matrix will be all zeros, with a 1 in the (2,3) and (3,2) positions.

Typically, this function is called internally and multiplied by the output of the get_time_depen-
dence() function.

Returns

• list of numpy.ndarray – The list of M (*l,n,n)matrices representing the real-valued
time-dependent portion of the hamiltonian. For 0 <= i <= M, the ith value along
the first axis is the portion of the matrix which will be multiplied by the output of the ith
time_dependence function.

• list of numpy.ndarray – The list of M (*l,n,n) matrices representing the
imaginary-valued time-dependent portion of the hamiltonian. For 0 <= i <= M,
the ith value along the first axis is the portion of the matrix which will be multiplied by
the output of the ith time_dependence function.
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Examples

>>> s = rq.Sensor(3)
>>> step = lambda t: 0 if t<1 else 1
>>> wave = lambda t: np.sin(2000*np.pi*t)
>>> f1 = {"states": (0,1), "transition_frequency":10, "rabi_frequency": 1,
→˓"time_dependence":wave}
>>> f2 = {"states": (1,2), "transition_frequency":10, "rabi_frequency": 2,
→˓"time_dependence":step}
>>> s.add_couplings(f1, f2)
>>> time_hams, time_hams_i = s.get_time_couplings()
>>> for H in time_hams:
... print(H)
[[0.+0.j 1.+0.j 0.+0.j]
[1.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j]]
[[0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 2.+0.j]
[0.+0.j 2.+0.j 0.+0.j]]

To handle stacking across the steady-state and time hamiltonians, the dimensions are matched in a way
that broadcasting works in a numpy-friendly way

>>> s = rq.Sensor(3)
>>> rabi = np.linspace(-1,1,11)
>>> step = lambda t: 0 if t<1 else 1
>>> blue = {"states":(0,1), "rabi_frequency":rabi, "detuning":1}
>>> red = {"states":(1,2), "rabi_frequency":rabi, "detuning":0, time_
→˓dependence : step}
>>> s.add_couplings(red, blue)
>>> time_hams, time_hams_i = s.get_time_couplings()
>>> print(s.get_hamiltonian().shape)
>>> print(time_hams[0].shape)
>>> print(time_hams_i[0].shape)
(1, 11, 3, 3)
(11, 1, 3, 3)
(11, 1, 3, 3)

get_time_dependence()→ List[Callable[[float], complex]]
Function which returns a list of the time_dependence functions.

The list is returned with in the order that matches with the time hamiltonians from get_time_cou-
plings() such that the ith element of of the return of this functions corresponds with the ith Hamil-
tonian terms returned by that function.

Returns
List of scalar functions, representing all couplings specified with a time_dependence.

Return type
list
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Examples

>>> s = rq.Sensor(3)
>>> step = lambda t: 0 if t<1 else 1
>>> wave = lambda t: np.sin(2000*np.pi*t)
>>> f1 = {"states": (0,1), "transition_frequency":10, "rabi_frequency": 1,
→˓"time_dependence":wave}
>>> f2 = {"states": (1,2), "transition_frequency":10, "rabi_frequency": 2,
→˓"time_dependence":step}
>>> s.add_couplings(f1, f2)
>>> print(s.get_time_dependence())
[<function <lambda> at 0x7fb310edd9d0>, <function <lambda> at␣
→˓0x7fb37c0c81f0>]

get_time_hamiltonians()→ Tuple[ndarray, List[ndarray], List[ndarray]]
Get the hamiltonians for the time solver.

Get both the steady state hamiltonian (as returned by get_hamiltonian()) and the time_dependent
hamiltonians (as returned by get_time_couplings()). The time dependent hamiltonians give 2
terms, the hamiltonian corresponding to the real part of the coupling and the hamiltonian corresponding
to the imaginary part.

In the case where the basis of the Sensor was explicitly defined with a list of states, the ordering of
rows and coulumns in the hamiltonian corresponds to the ordering of states passed in the basis.

Returns

• hamiltonian_base (np.ndarray) – The (*l,n,n) shape base hamiltonian of the sys-
tem containing all elements that do not depend on time, where n is the basis size of the
sensor.

• dipole_matrix_real (np.ndarray) – The(M,n,n) shape array ofmatrices representing
the real time-dependent portion of the hamiltonian. For 0 <= i <= M, the ith value
along the first axis is the portion of the matrix which will be multiplied by the output of
the ith time_dependence function.

• dipole_matrix_imag (nd.ndarray) – The (M,n,n) shape array of matrices represent-
ing the imaginary time-dependent portion of the hamiltonian. For 0 <= i <= M, the
ith value along the first axis is the portion of the matrix which will be multiplied by the
output of the ith time_dependence function.

Examples

>>> s = rq.Sensor(2)
>>> step = lambda t: 0. if t<1 else 1.
>>> s.add_coupling(states=(0,1), detuning=1, rabi_frequency=1, time_
→˓dependence=step)
>>> H_base, H_time_real, H_time_imaginary = s.get_time_hamiltonians()
>>> print(H_base)
>>> print(H_time_real)
>>> print(H_time_imaginary)
[[0.+0.j 0.+0.j]
[0.+0.j 1.+0.j]]
[array([[0. +0.j, 0.5+0.j],

[0.5+0.j, 0. +0.j]])]
[array([[0.+0.j , 0.+0.5j],

[0.-0.5j, 0.+0.j ]])]

If the basis is passed as a list, rows and columns are in the order specified:
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>>> s = rq.Sensor([ g , e ])
>>> step = lambda t: 0. if t<1 else 1.
>>> s.add_coupling(states=( g , e ), detuning=1, rabi_frequency=1, time_
→˓dependence=step)
>>> H_base, H_time_real, H_time_imaginary = s.get_time_hamiltonians()
>>> print(H_base)
>>> print(H_time_real)
>>> print(H_time_imaginary)
[[ 0.+0.j 0.+0.j]
[ 0.+0.j -1.+0.j]]
[array([[0. +0.j, 0.5+0.j],

[0.5+0.j, 0. +0.j]])]
[array([[0.+0.j , 0.+0.5j],

[0.-0.5j, 0.+0.j ]])]

get_transition_frequencies()→ ndarray
Gets an array of the diagonal elements of the Hamiltonian from the field detunings.

Wraps the get_hamiltonian_diagonal() function using both transition frequencies and detun-
ings. Primarily for internal use.

Returns
N-D array of the hamiltonian diagonal. For an n-level system with stack shape *l, will be
shape (*l, n)

Return type
numpy.ndarray

get_value_dictionary(key: str)→ dict
Get subset of dictionary coupling parameters.

Return a dictionary of key value pairs where the keys are couplings added to the system and the val-
ues are the value of the parameter specified by key. Produces an output that can be passed directly to
get_hamiltonian_diagonal(). Only couplings whose parameter dictionaries contain “key” will
be in the returned dictionary.

Parameters
key (str) – String value of the parameter name to build the dictionary. For example,
get_value_dictionary("detuning") will return a dictionary with keys corre-
sponding to transitions and values corresponding to detuning for each transition which has
a detuning.

Returns
Coupling dictionary with couplings as keys and corresponding values set by input key.

Return type
dict

Examples

>>> s = rq.Sensor(4)
>>> f1 = {"states": (0,1), "detuning": 2, "rabi_frequency": 1}
>>> f2 = {"states": (1,2), "detuning": 3, "rabi_frequency": 2}
>>> f3 = {"states": (2,3), "rabi_frequency": 3, "transition_frequency": 3}
>>> s.add_couplings(f1, f2, f3)
>>> print(s.get_value_dictionary("detuning"))
{(0,1): 2, (1,2): 3}

kappa: Optional[float] = None

Differential prefactor, in units of (rad/s)/m. Must be specified when using Sensor. Automatically
calculated when using Cell.

6.1. rydiqule 113

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float


rydiqule, Release 1.2.2

probe_freq: Optional[float] = None

Probing transition frequency, in rad/s.

probe_tuple: Optional[Tuple[Union[int, str], Union[int, str]]] = None

Coupling edge that corresponds to the probing field. Defaults to (0,1) in Cell.

set_experiment_values(probe_tuple: Tuple[int, int], probe_freq: float, kappa: float, eta:
Optional[float] = None, cell_length: Optional[float] = None, beam_area:
Optional[float] = None)

Sets attributes needed for observable calculations.

Parameters

• probe_tuple (tuple of int) – Coupling that corresponds to the probing field.

• probe_freq (float) – Frequency of the probing transition, in Mrad/s.

• kappa (float) – Numerical prefactor that defines susceptibility, in (rad/s)/m. See
get_susceptibility() and Cell.kappa for details.

• eta (float) – Noise-density prefactor, in root(Hz). See Cell.eta for details.

• cell_length (float, optional) – The optical path length through themedium,
in meters.

• beam_area (float, optional) – The cross-sectional area of the beam, in m^2.

set_gamma_matrix(gamma_matrix: ndarray)
Set the decoherence matrix for the system.

Works by first removing all existing decoherent data from graph edges, then individually adding all
nonzero terms of a provided gamma matrix to the corresponding graph edges. Can be used to set all
decoherence attributes to edges simultaneously, but add_decoherence() is preferred.

Unlike add_decoherence(), does not support scanning multiple decoherence values, rather should
be used to set the decoherences of the system to individual static values.

Parameters
gamma_matrix (numpy.ndarray) – Array of shape (basis_size, ba-
sis_size). Element (i,j) describes the decoherence rate, in Mrad/s, from state i to
state j.

Raises

• TypeError – If gamma_matrix is not a numpy array.

• ValueError – If gamma_matrix is not a square matrix of the appropriate size

• ValueError – If the shape of gamma_matrix is not compatible with self.
basis_size.

Examples

>>> s = rq.Sensor(2)
>>> f1 = {"states": (0,1), "transition_frequency":10, "rabi_frequency": 1}
>>> s.add_couplings(f1)
>>> gamma = np.array([[.1,0],[.1,0]])
>>> s.set_gamma_matrix(gamma)
>>> print(s.decoherence_matrix())
[[0.1 0. ]
[0.1 0. ]]
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spatial_dim()→ int
Returns the number of spatial dimensions doppler averaging will occur over.

Determining if a float should be treated as zero is done using numpy.isclose, which has default
absolute tolerance of 1e-08.

Returns
Number of dimensions, between 0 and 3, where 0 means no doppler averaging kvectors
have been specified or are too small to be calculates.

Return type
int

Examples

No spatial dimesions specified

>>> s = rq.Sensor(2)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1)
>>> print(s.spatial_dim())
0

One spatial dimension specified

>>> s = rq.Sensor(2)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1, kvec=(0,0,1))
>>> print(s.spatial_dim())
1

Multiple spatial dimensions can exist in a single coupling or across multiple couplings

>>> s = rq.Sensor(2)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1, kvec=(1,0,1))
>>> print(s.spatial_dim())
2

>>> s = rq.Sensor(3)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1, kvec=(1,0,1))
>>> s.add_coupling((1,2), detuning = 2, rabi_freqency=2, kvec=(0,1,0))
>>> print(s.spatial_dim())
3

property states

Property which gets a list of labels for the sensor in the order defined in __init__(). This is also the
order corresponding the rows and columns in the system Hamiltonian and decoherence matrix.

Returns
List of states of the system defined the constructor, in the order corresponding to rows and
columns of the Hamiltonian.

Return type
list

states_with_label(label: str)→ List[Union[int, str]]
Return a dict of all states with a label matching a given regular expression (regex) pattern. The dictionary
will be consist of keys which are string labels applied to states with the label_states() function,
and values which are the corresponding integer values of the node on the graph. For more information
on using regex patterns see this guide <https://docs.python.org/3/howto/regex.
html#regex-howto>.
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Parameters
label (string) – Regular expression pattern to match labels to. All labels matching
the string will be returned in the keys of the dictionary.

Returns
List of all labels of states in the sensor which match the provided regex pattern.

Return type
list

Raises
ValueError – If label is not a regular expression string.

Examples

>>> s = rq.Sensor(3)
>>> s.add_coupling((0,1), detuning=1, rabi_freqency=1, label="hi mom")
>>> s.add_coupling((1,2), detuning=2, rabi_requency=2)
>>> s.label_states({0:"g", 1:"e1", 2:"e2"})
>>> print(s.states_with_label("e[12]"))
[ e1 , e2 ]

unzip_parameters(zip_label, verbose=True)
Remove a set of zipped parameters from the internal zipped_parameters list.

If an element of the internal _zipped_parameters array matches ALL labels provided, removes it
from the internal zipped_parametersmethod. If no such element is in _zipped_parameters,
does nothing.

Parameters
zip_label (str) – The string label corresponding the key to be deleted in the
_zipped_parameters attribute.

Notes

Note: This function should always be used rather than modifying the _zipped_parameters at-
tribute directly.

Examples

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=(0,1), detuning=det, rabi_frequency=1, label=
→˓"probe")
>>> s.add_coupling(states=(1,2), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "(1,2)_detuning", zip_label="demo1")
>>> print(s._zipped_parameters) #NOT modifying directly
>>> s.unzip_parameters("demo1")
>>> print(s._zipped_parameters) #NOT modifying directly
{ demo1 : [ (1,2)_detuning , probe_detuning ]}
{}

If the labels provided are not a match, a message is printed and nothing is altered.
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>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=(0,1), detuning=det, rabi_frequency=1, label=
→˓"probe")
>>> s.add_coupling(states=(1,2), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "(1,2)_detuning")
>>> print(s._zipped_parameters) #NOT modifying directly
>>> s.unzip_parameters( blip_0 )
>>> print(s._zipped_parameters) #NOT modifying directly
{ zip_0 : [ (1,2)_detuning , probe_detuning ]}
No label matching blip_0, no action taken
{ zip_0 : [ (1,2)_detuning , probe_detuning ]}

variable_parameters(apply_mesh: bool = False)→ List[Tuple[Tuple[Union[int, str], Union[int,
str]], str, ndarray]]

Property to retrieve the values of parameters that were stored on the graph as arrays.

Values are returned as a list of tuples in the standard order of pythons default sorting, applied first to the
tuple indicating states and then to the key of the parameter itself. This means that couplings are sorted first
by lower state, then by upper state, then alphabetically by the name of the parameter.To determine order,
all state labels treated as their integer position in the basis as determined by ordering in the constructor
__init__().

Returns
A list of tuples corresponding to the parameters of the systems that are variable (i.e. stored
as an array). They are ordered accordning to states, then according to variable name. Tuple
entries of the list take the form (states, param_name, value)

Return type
list of tuples

Examples

>>> s = rq.Sensor(3)
>>> vals = np.linspace(-1,2,3)
>>> s.add_coupling(states=(1,2), rabi_frequency=vals, detuning=1)
>>> s.add_coupling(states=(0,1), rabi_frequency=vals, detuning=vals)
>>> for states, key, value in s.variable_parameters():
... print(f"{states}: {key}={value}")
(0, 1): detuning=[-1. 0.5 2. ]
(0, 1): rabi_frequency=[-1. 0.5 2. ]
(1, 2): rabi_frequency=[-1. 0.5 2. ]

The order is important; in the unzipped case, it will sort as though all state labels were cast to strings,
meaning integers will always be treated as first.

>>> s = rq.Sensor([None, e1 , e2 ])
>>> det1 = np.linspace(-1, 1, 3)
>>> det2 = np.linspace(-1, 1, 5)
>>> blue = {"states":(0, e1 ), "rabi_frequency":1, "detuning":det1}
>>> red = {"states":( e1 , e2 ), "rabi_frequency":3, "detuning":det2}
>>> s.add_couplings(blue, red)
>>> for states, key, value in s.variable_parameters():
... print(f"{states}: {key}={value}")
>>> print(f"Axis Labels: {s.axis_labels()}")
( g , 1): detuning=[-1. 0. 1.]
(1, 2): detuning=[-1. -0.5 0. 0.5 1. ]
Axis Labels: ["( g ,1)_detuning", (1,2)_detuning ]
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zip_parameters(*parameters: str, zip_label: Optional[str] = None)

Define 2 scannable parameters as “zipped” so they are scanned in parallel.

Zipped parameters will share an axis when quantities relevant to the equations of motion, such as the
gamma_matrix and hamiltonian are generated. Note that calling this function does not affect
internal quanties directly, but adds their labels together in the internal self._zipped_parameters
dict, and they are zipped at calculation time for hamiltonian and decoherence_matrix.

Parameters
parameters (str) – Parameter labels to scan together. Parameter labels are
strings of the form "<coupling_label>_<parameter_name>", such as "(0,
1)_detuning". Must be at least 2 labels to zip. Note that couplings are specified in
the add_coupling() function. If unspecified in this function, the pair of states in the
coupling cast to a string will be used.

zip_label
[optional, str] String label shorthand for the zipped parameters. The label for the axis of these
parameters in axis_labels(). Does not affect functionality of the Sensor. If unspecified, the
label used will be "zip_" + <number>.

Raises

• ValueError – If fewer than 2 labels are provided.

• ValueError – If any of the 2 labels are the same.

• ValueError – If any elements of labels are not labels of couplings in the sensor.

• ValueError – If any of the parameters specified by labels are already zipped.

• ValueError – If any of the parameters specified are not list-like.

• ValueError – If all list-like parameters are not the same length.

Notes

Note: This function should be called last after all Sensor couplings and dephasings have been added.
Changing a coupling that has already been zipped removes it from the self.zipped_parameters
list.

Note: Modifying the Sensor.zipped_parameters attribute directly can break some function-
ality and should be avoided. Use this function or unzip_parameters() instead.

Note: When defining the zip strings for states labelled with strings, be sure to additional or " characters
on either side of the labels, as demonstrated in the second example below.
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Examples

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=(0,1), detuning=det, rabi_frequency=1, label=
→˓"probe")
>>> s.add_coupling(states=(1,2), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "(1,2)_detuning", zip_label="demo_
→˓zip")
>>> print(s._zipped_parameters) #NOT modifying directly
{ demo_zip : [ (1,2)_detuning , probe_detuning ]}

Make sure to add the appropriate additional string markings when the states are strings.

>>> s = rq.Sensor([ g , e1 , e2 ])
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling(states=( g , e1 ), detuning=det, rabi_frequency=1,␣
→˓label="probe")
>>> s.add_coupling(states=( e1 , e2 ), detuning=det, rabi_frequency=1)
>>> s.zip_parameters("probe_detuning", "( e1 , e2 )_detuning", zip_label=
→˓"demo_zip")
>>> print(s._zipped_parameters) #NOT modifying directly
{ demo_zip : ["( e1 , e2 )_detuning", probe_detuning ]}

6.1.7 rydiqule.sensor_solution

Bunch-like object use to store aspects of a solution when calling rydiule.solve() Adds essential keys with “None”
entries

Classes

Solution(**kwargs) Manual implementation of a bunch object which fuc-
tions as a dictionary with the ability to access elements.

rydiqule.sensor_solution.Solution

class rydiqule.sensor_solution.Solution(**kwargs)

Bases: dict

Manual implementation of a bunch object which fuctions as a dictionary with the ability to access elements.

For now, little additional funcitonality exists on top of this, but some may be added in the future.

__init__(**kwargs)
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Methods

__init__(**kwargs)
clear()
copy()
deepcopy()
fromkeys([value]) Create a new dictionary with keys from iterable and

values set to value.
get(key[, default]) Return the value for key if key is in the dictionary,

else default.
get_OD() Calculates the optical depth from the solution.
get_phase_shift() Extract the phase shift from a solution.
get_solution_element(idx) Return a slice of an n_dimensional matrix of solu-

tions of shape (...,n^2-1), where n is the basis size
of the quantum system.

get_susceptibility() Return the atomic susceptibility on the probe tran-
sition.

get_transmission_coef() Extract the transmission term from a solution.
items()
keys()
pop(k[,d]) If the key is not found, return the default if given;

otherwise, raise a KeyError.
popitem() Remove and return a (key, value) pair as a 2-tuple.
rho_ij(i, j) Gets the i,j element(s) of the density matrix solu-

tions.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E, ]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] =
F[k]

values()
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Attributes

beam_area Cross-sectional area of the probing beam, in square
meters.

cell_length Optical path length of the medium, in meters.
eta Eta constant from the Cell.
kappa Kappa constant from the Cell.
probe_freq Probing transition frequency, in rad/s.
probe_rabi Probe Rabi frequency, in Mrad/s.
probe_tuple Coupling edge corresponding to probing field.
rho Solutions returned by the solver.
couplings Dictionary of the couplings.
axis_labels Labels for the axes of scanned parameters.
axis_values Value arrays corresponding to each axis.
rq_version Version of rydiqule that created the Solution.
dm_basis The list of density matrix elements in the order they

appear in the solution.
doppler_classes Doppler classes used to perform the doppler aver-

age.
t Times the solution is returned at, when using the

time solver.
init_cond Initial conditions, when using the time solver.

_beam_area: Optional[float]

Cross-sectional area of the probing beam, in square meters. Not generally defined when using a Sensor.

_cell_length: Optional[float]

Optical path length of the medium, in meters. Not generally defined when using a Sensor.

_eta: Optional[float]

Eta constant from the Cell. Not generally defined when using a Sensor.

Type
float, optional

_kappa: Optional[float]

Kappa constant from the Cell. Not generally defined when using a Sensor.

Type
float, optional

_probe_freq: Optional[float]

Probing transition frequency, in rad/s. Not generally defined when using a Sensor.

_probe_rabi: Optional[Union[float, ndarray]]

Probe Rabi frequency, in Mrad/s. Not generally defined when using a Sensor.

_probe_tuple: Optional[Tuple[Union[int, str], Union[int, str]]]

Coupling edge corresponding to probing field. Not generally defined when using a Sensor.

axis_labels: list[str]

Labels for the axes of scanned parameters. If doppler averaging but not summing, doppler dimensions
are prepended.

Type
list of str

axis_values: list

Value arrays corresponding to each axis. If doppler averaging but not summing, doppler classes in internal
units are added.
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Type
list

property beam_area: float

Cross-sectional area of the probing beam, in square meters. Not generally defined when using a Sensor.

property cell_length: float

Optical path length of the medium, in meters. Not generally defined when using a Sensor.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

couplings: dict

Dictionary of the couplings.

Type
dict

deepcopy()

dm_basis: ndarray

The list of density matrix elements in the order they appear in the solution. See Sensor.basis() for
details.

Type
list of str

doppler_classes: Optional[ndarray]

Doppler classes used to perform the doppler average. Will be None if doppler averaging was not used.

Type
numpy.ndarray, optional

property eta: float

Eta constant from the Cell. Not generally defined when using a Sensor.

fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

get_OD()→ Union[float, ndarray]
Calculates the optical depth from the solution. This equation comes from Steck’s Quantum Optics Notes
Eq. 6.74.

Assumes the optically-thin approximation is valid. If a calculated OD for a solution exceeds 1, this
approximation is likely invalid.

Returns
OD – Optical depth of the sample

Return type
float or numpy.ndarray

Warns
UserWarning – If any OD exceeds 1, which indicates the optically-thin approximation is
likely invalid.

122 Chapter 6. API Documenation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray


rydiqule, Release 1.2.2

Examples

>>> c = rq.Cell( Rb85 , *rq.D2_states( Rb85 ), cell_length = 0.01)
>>> c.add_coupling(states=(0,1), rabi_frequency=1, detuning=1)
>>> sols = rq.solve_steady_state(c)
>>> print(sols.rho.shape)
>>> OD = sols.get_OD()
>>> print(OD)
(3,)
29.642013239786518
~/src/Rydiqule/src/rydiqule/sensor_solutions.py:103: UserWarning:
At least one solution has optical depth greater than 1.
Integrated results are likely invalid.

get_phase_shift()→ Union[float, ndarray]
Extract the phase shift from a solution.

Assumes the optically-thin approximation is valid.

Returns
Probe phase in radians.

Return type
float or numpy.ndarray

Examples

>>> c = rq.Cell( Rb85 , *rq.D2_states( Rb85 ), cell_length = .00001)
>>> c.add_coupling(states=(0,1), rabi_frequency=1, detuning=1)
>>> sols = rq.solve_steady_state(c)
>>> print(sols.rho.shape)
>>> phase_shift = sols.get_phase_shift()
>>> print(phase_shift)
(3,)
80.52949114644437

get_solution_element(idx: int)→ Union[float, ndarray]
Return a slice of an n_dimensional matrix of solutions of shape (…,n^2-1), where n is the basis size of
the quantum system.

Parameters
idx (int) – Solution index to slice.

Returns
Slice of solutions corresponding to index idx. For example, if sols has shape (…, n^2-1),
sol_slice will have shape (…).

Return type
float or numpy.ndarray

Raises
IndexError – If idx in not within the shape determined by basis size.
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Examples

>>> c = rq.Cell( Rb85 , *rq.D2_states( Rb85 ))
>>> c.add_coupling(states=(0,1), rabi_frequency=1, detuning=1)
>>> sols = rq.solve_steady_state(c)
>>> print(sols.rho.shape)
>>> rho_01_im = sols.get_solution_element(0)
>>> print(rho_01_im)
(3,)
0.0013139903428765695

get_susceptibility()→ Union[complex, ndarray]
Return the atomic susceptibility on the probe transition.

Experimental parameters must be defined manually for a Sensor.

Returns
Susceptibility of the density matrix solution.

Return type
complex or numpy.ndarray

Examples

>>> c = rq.Cell( Rb85 , *rq.D2_states( Rb85 ), cell_length = 0.0001)
>>> c.add_coupling(states=(0,1), rabi_frequency=1, detuning=1)
>>> sols = rq.solve_steady_state(c)
>>> print(sols.rho.shape)
>>> sus = sols.get_susceptibility()
>>> print(sus)
(3,)
(1.9046090082907774e-05+0.0003680924230367812j)

get_transmission_coef()→ Union[float, ndarray]
Extract the transmission term from a solution.

Assumes the optically-thin approximation is valid.

Returns
Numerical value of the probe absorption in fractional units (P_out/P_in).

Return type
float or numpy.ndarray

Examples

>>> c = rq.Cell( Rb85 , *rq.D2_states( Rb85 ), cell_length = 0.0001)
>>> c.add_coupling(states=(0,1), rabi_frequency=0.1, detuning=0)
>>> sols = rq.solve_steady_state(c)
>>> print(sols.rho.shape)
>>> t = sols.get_transmission_coef()
>>> print(t)
(3,)
0.7425903081191148

init_cond: ndarray

Initial conditions, when using the time solver. Undefined otherwise.

Type
numpy.ndarray
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items()→ a set-like object providing a view on D's items

property kappa: float

Kappa constant from the Cell. Not generally defined when using a Sensor.

keys()→ a set-like object providing a view on D's keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

property probe_freq: float

Probing transition frequency, in rad/s. Not generally defined when using a Sensor.

property probe_rabi: Union[complex, ndarray]

Probe Rabi frequency, in Mrad/s. Not generally defined when using a Sensor.

property probe_tuple: Tuple[Union[int, str], Union[int, str]]

Coupling edge corresponding to probing field. Not generally defined when using a Sensor.

rho: ndarray

Solutions returned by the solver.

Type
numpy.ndarray

rho_ij(i: int, j: int)→ Union[complex, ndarray]
Gets the i,j element(s) of the density matrix solutions.

See get_rho_ij() for details.

Parameters

• i (int) – density matrix element i

• j (int) – density matrix element j

Returns
[i,j] elment(s) of the density matrix

Return type
complex or numpy.ndarray

rq_version: str

Version of rydiqule that created the Solution.

Type
str

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

t: ndarray

Times the solution is returned at, when using the time solver. Undefined otherwise.

Type
numpy.ndarray
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update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] =
F[k]

values()→ an object providing a view on D's values

6.1.8 rydiqule.sensor_utils

Utilities used by the Sensor classes.

Functions

draw_diagram(sensor[, include_dephasing]) Draw a matplotlib plot that shows the energy level di-
agram, couplings, and dephasing paths.

generate_eom(hamiltonian, gamma_matrix[, ...]) Create the optical bloch equations for a hamiltonian and
decoherence matrix using the Lindblad master equa-
tion.

get_basis_transform(basis_size) Function that defines the basis transformation matrix u
and its inverse u_i, between the real and complex basis.

get_rho_ij(sols, i, j) For a given density matrix solution, retrieve a specific
element of the density matrix.

get_rho_populations(sols) For a given density matrix solution, return the diagonal
populations.

make_real(equations, constant[, ground_removed]) Converts equations of motion from complex basis to
real basis.

remove_ground(equations) Remove the ground state from the equations of motion
using population conservation.

scale_dipole(dipole) Scale a dipole matrix from units of a0*e to Mrad/s
when multiplied by a field in V/m.

rydiqule.sensor_utils.draw_diagram

rydiqule.sensor_utils.draw_diagram(sensor: Sensor, include_dephasing: bool = True)→ LD
Draw a matplotlib plot that shows the energy level diagram, couplings, and dephasing paths.

To show the plot, call plt.show(). If in a jupyter notebook, this is handled automatically.

Diagram has horizontal lines for the energy levels (spacing not to scale). Integer labels refer to the internal
indexing for each state. If sensor is of type Cell, will also add text labels to each state of the quantum
numbers.

Solid arrows between states are couplings defined with a non-zero Rabi frequency. Dashed arrows between
states are couplings defined with a dipole moment.

Wiggly arrows between states denote a dephasing pathway. Opacity represents strength of dephasing relative
to the largest specified dephasing, where fully opaque is the largest dephasing.

Parameters

• sensor (Sensor) – Sensor object to diagram.

• include_dephasing (bool, optional) –Whether to plot dephasing paths. De-
fault is True.

Returns
Diagram handle
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Return type
leveldiagram.LD

rydiqule.sensor_utils.generate_eom

rydiqule.sensor_utils.generate_eom(hamiltonian: ndarray, gamma_matrix: ndarray,
remove_ground_state: bool = True, real_eom: bool = True)
→ Tuple[ndarray, ndarray]

Create the optical bloch equations for a hamiltonian and decoherence matrix using the Lindblad master equa-
tion.

Parameters

• hamiltonian (numpy.ndarray) – Complex array representing the Hamiltonian
matrix of the system, the matrix should be of shape (*l, n, n), where n is the basis
size and l is the shape of the stack of hamiltonians. For example, if the hamiltonian varies
in 2 parameters l might be (10, 10).

• gamma_matrix (numpy.ndarray) – Complex array representing the decoherence
matrix of the system, the matrix should be of size (n, n), where n is the basis size.

• remove_ground_state (bool, optional) – Remove the ground state from the
equations of motion using population conservation. Setting to False is intended for
internal use only and is not officially supported. See remove_ground() for details.

• real_eom (bool, optional) – Transform the equations of motion from the com-
plex basis to the real basis. Setting to False is intended for internal use only and is not
officially supported Seee make_real() for details.

Returns

• equations (numpy.ndarray) – The array representing the Optical Bloch Equations
(OBEs) of the system. The shape will be (*l, n^2-1, n^2-1) if re-
move_ground_state is True and (*l, n^2, n^2) otherwise. The datatype
will be np.float64 if real_eom is True and np.complex128 otherwise.

• const (numpy.ndarray) – Array of which defines the constant term in the linear OBEs.
The shape will be (*l, n^2-1) if remove_ground_state is True and (*l,
n^2) otherwise. The datatype will be np.float64 if real_eom is True and np.
complex128 otherwise.

Raises
ValueError – If the shapes of gamma_matrix and hamiltonian are not matching: or not
square in the last 2 dimensions

Examples

>>> ham = np.diag([1,-1])
>>> gamma = np.array([[.1, 0],[.1,0]])
>>> print(ham.shape)
>>> eom, const = rq.generate_eom(ham, gamma)
>>> print(eom)
>>> print(const.shape)
(2, 2)
[[-0.1 2. 0. ]
[-2. -0.1 0. ]
[ 0. 0. -0.1]]
(3,)

This also works with a “stack” of multiple hamiltonians:
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>>> ham_base = np.diag([1,-1])
>>> ham_full = np.array([ham_base for _ in range(10)])
>>> gamma = np.array([[.1, 0],[.1,0]])
>>> print(ham_full.shape)
>>> eom, const = rq.generate_eom(ham_full, gamma)
>>> print(eom.shape)
>>> print(const.shape)
(10, 2, 2)
(10, 3, 3)
(10, 3)

rydiqule.sensor_utils.get_basis_transform

rydiqule.sensor_utils.get_basis_transform(basis_size: int)→ Tuple[ndarray, ndarray]
Function that defines the basis transformation matrix u and its inverse u_i, between the real and complex basis.

This matrix u implements that the 𝜌[𝑗, 𝑖] → 𝑅𝑒(𝜌[𝑗, 𝑖]) and 𝜌[𝑖, 𝑗] → 𝐼𝑚(𝜌[𝑗, 𝑖]).

The transformation is not quite unitary, due to the asymmetry of the factors of 1/2.

Parameters
basis_size (int) – Size of the basis to generate transformations for.

Returns

• u (numpy.ndarray) – Forward transformation matrix.

• u_inv (numpy.ndarray) – Inverse transformation matrix.

Raises
ValueError – If basis_size does not match current basis.

rydiqule.sensor_utils.get_rho_ij

rydiqule.sensor_utils.get_rho_ij(sols: Union[ndarray, Solution], i: int, j: int)→ Union[complex,
ndarray]

For a given density matrix solution, retrieve a specific element of the density matrix.

Assumes the ground state of the solution is eliminated (as per remove_ground()), and assumes Rydiqule’s
nominal state ordering of the Density Vector (per make_real()).

Parameters

• sols (numpy.ndarray or Solution) – Solutions to extract the matrix element for. Can
be either the solution object returned by the solve or an N-D array representing density
vectors, with ground state removed, and written in the totally real equations.

• i (int) – density matrix index i

• j (int) – density matrix index j

Returns
Array of rho_ij values. Will be of type float when i==j. Will be of type complex128 when
i!=j.

Return type
numpy.ndarray
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Examples

>>> sols = np.arange(180).reshape((4,5,3,3))
>>> print(sols.shape)
>>> rho_01 = rq.get_rho_ij(sols, 0,1)
>>> print(rho_01.shape)
>>> print(rho_01[0,0])
(4, 5, 3, 3)
(4, 5, 3)
[0.-1.j 3.-4.j 6.-7.j]

rydiqule.sensor_utils.get_rho_populations

rydiqule.sensor_utils.get_rho_populations(sols: Union[ndarray, Solution])→ ndarray
For a given density matrix solution, return the diagonal populations.

Note that rydiqule’s convention for removing the ground state forces population conservation, ie the sum of
these populations will be 1.

Parameters
sols (numpy.ndarray or Solution) – Solutions to extract the matrix element for. Can be
either the solution object returned by the solve or an N-D array representing density vectors,
with ground state removed, and written in the totally real equations.

Returns
Populations of the density matrices. Will have same shape as input solutions, with the last
dimension reduced to the basis size.

Return type
numpy.ndarray

rydiqule.sensor_utils.make_real

rydiqule.sensor_utils.make_real(equations: ndarray, constant: ndarray, ground_removed: bool =
True)→ Tuple[ndarray, ndarray]

Converts equations of motion from complex basis to real basis.

Changes the density vector equation for p_ij into the Re[p_ij] equation and changing the density vector equation
for p_ji into the equation for Im[p_ij].

Parameters

• equations (numpy.ndarray) – Complex equations of motion.

• constant (numpy.ndarray) – RHS of the equations of motion.

• ground_removed (bool, optional) – Indicates if equations has had the
ground state removed. Default is True.

Returns

• real_eqns (numpy.ndarray) – EOMs in real basis.

• real_const (numpy.ndarray) – RHS of EOMs in real basis.
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rydiqule.sensor_utils.remove_ground

rydiqule.sensor_utils.remove_ground(equations: ndarray)→ Tuple[ndarray, ndarray]
Remove the ground state from the equations of motion using population conservation.

Population conservation enforces

𝜌(0,0) = 1−
𝑛−1∑︁
𝑖=1

𝜌(𝑖,𝑖)

We use this equation to remove the EOM for rho_00 and enforce population conservation in the steady state.

Parameters
equations (numpy.ndarray) – array of shape (n^2, n^2) representing the equations of
motion of the system, where n is the number of basis states.

Returns
The modified equations of shape (n^2-1, n^2-1)

Return type
numpy.ndarray

rydiqule.sensor_utils.scale_dipole

rydiqule.sensor_utils.scale_dipole(dipole: Union[float, ndarray])→ Union[float, ndarray]
Scale a dipole matrix from units of a0*e to Mrad/s when multiplied by a field in V/m.

Parameters
dipole (float or numpy.ndarray) – Array of dipole moments in units of a0*e.
These are the default units used by ARC.

Returns
Scaled array in units of (Mrad/s)/(V/m)

Return type
numpy.ndarray

6.1.9 rydiqule.slicing

Modules

rydiqule.slicing.slicing A handful of tools that solvers use to interface with slic-
ing matrix stacks

rydiqule.slicing.slicing

A handful of tools that solvers use to interface with slicing matrix stacks
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Functions

compute_grid(stack_shape, n_slices) Calculate the bin edges to break a given stack shape into
at least a certain number of pieces

get_slice_num(n, stack_shape, doppler_shape,
...)

Estimates the memory required for the desired steady
state solve.

get_slice_num_t(n, stack_shape, ...[, debug]) Estimates the memory required for the desired time
solve.

matrix_slice(*matrices[, edges, n_slices]) Generator that returns parts of a stack of matrices.
memory_size(shape, item_size) Calculate the memory size, in bytes of an array with the

given size and shape.

rydiqule.slicing.slicing.compute_grid

rydiqule.slicing.slicing.compute_grid(stack_shape: Tuple[int, ...], n_slices: int)
Calculate the bin edges to break a given stack shape into at least a certain number of pieces

Works by iterating first over a number of slices per axis (N=1,2,3), then over each in the stack shape, splitting
the axis into N slices, and comparing the total number of slices to the number specified. In a sense, the
algorithm factors a number greater than or equal to n_slices, then breaks the stack along each axis according to
this factorization. If the axis lengths do not break evenly into the appropriate number of pieces, the bin edges
are truncated to an integer. This means that the slices are not guaranteed to be (1/n_slices), but they
will be close enough for most cases.

Parameters

• stack_shape (tuple of int) – The shape of the stack to be sliced. Does not
include Hamiltonian or matrix equation dimensions, so for a hamiltonain stack of shape
(*l,n,n), stack_shape will be *l.

• n_slices (int) – The number of slices into which to break the hamiltonian. Lower
bound on the number of slices there will actually be.

Returns
The list of bin edges axis by axis. Can be passed to matrix_slice() as the edges
argument.

Return type
list(np.ndarray)

Examples

>>> stack_shape=(10,10)
>>> print(compute_grid(stack_shape, 4))
[array([ 0, 5, 10]), array([ 0, 5, 10])]
>>> print(compute_grid(stack_shape, 6))
[array([ 0, 3, 6, 10]), array([ 0, 5, 10])]
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rydiqule.slicing.slicing.get_slice_num

rydiqule.slicing.slicing.get_slice_num(n: int, stack_shape: Tuple[int, ...], doppler_shape:
Tuple[int, ...], sum_doppler: bool, weight_doppler: bool,
n_slices: Optional[int] = None, debug: bool = False)→
Tuple[int, Tuple[int, ...]]

Estimates the memory required for the desired steady state solve.

Estimates are fairly accurate, but not guaranteed. Goal is to err on allowing edge case solves to proceed.

Parameters

• n (int) – Size of the system basis

• stack_shape (tuple of int) – Tuple of sizes for the hamiltonian stack to be
solved

• doppler_shape (tuple of int) – Tuple of sizes for the doppler axes. Pass an
empty tuple if no doppler averaging.

• sum_doppler (bool) – Whether solution will be summing the doppler average

• weight_doppler (bool) – Whether the solution will apply weights to the doppler
averaging

• n_slices (int, default=1) – Manually override the minimum number of hamil-
tonian slices to use.

• debug (bool, default=False) – Print debug information about the memory cal-
culations.

Returns

• n_ham_slices (int) – Number of slices to use when solving the stacked hamiltonian

• out_sol_shape (tuple of int) – Shape of the resulting solution for this calculation.

Raises

• MemoryError – If there isn’t enough memory to solve the system:

• MemoryError – If sum_doppler=False and full solution does not fit in memory.:

rydiqule.slicing.slicing.get_slice_num_t

rydiqule.slicing.slicing.get_slice_num_t(n: int, stack_shape: Tuple[int, ...], doppler_shape:
Tuple[int, ...], time_points: int, sum_doppler: bool,
weight_doppler: bool, n_slices: Optional[int], debug:
bool = False)→ Tuple[int, Tuple[int, ...]]

Estimates the memory required for the desired time solve.

Note that the time solver used (scipy.solve_ivp) is an adaptive solver, so the internal number of time steps used
is problem dependent and not controlled by the requested number of time points. Generally, the number of
points is proportional to the highest frequency in the problem and the length of the time to solve. To estimate
a lower bound on the memory needed to time solve, we use a fudge factor of 4 on the requested time points.
This is unlikely to be accurate even in a general case.

Parameters

• n (int) – Size of the system basis

• stack_shape (tuple of int) – Tuple of sizes for the hamiltonian stack to be
solved

• doppler_shape (tuple of int) – Tuple of sizes for the doppler axes. Pass an
empty tuple if no doppler averaging.
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• time_points (int) – Number of time steps requested from the time solver. This sets
the output solution shape. An internal fudge factor of 4 is applied for memory estimation
purposes.

• sum_doppler (bool) – Whether solution will be summing the doppler average

• weight_doppler (bool) – Whether the solution will apply weights to the doppler
averaging

• n_slices (int, default=1) – Manually override the minimum number of hamil-
tonian slices to use.

• debug (bool, default=False) – Print debug information about the memory cal-
culations.

Returns

• n_ham_slices (int) – Number of slices to use when solving the stacked hamiltonian

• out_sol_shape (tuple of int) – Shape of the resulting solution for this calculation.

Raises
MemoryError – If sum_doppler=False and full solution does not fit in memory.:

Warns
UserWarning (If there is unlikely to be enough memory to solve the system.)

rydiqule.slicing.slicing.matrix_slice

rydiqule.slicing.slicing.matrix_slice(*matrices: ndarray, edges: Optional[Iterable] = None,
n_slices: Optional[int] = None)→
Iterator[Tuple[Tuple[slice, ...],
Unpack[Tuple[np.ndarray, ...]]]]

Generator that returns parts of a stack of matrices.

Given a stack of n by n matrices, produces a genererator which returns the given matrices in the specified
number of smaller stacks. For example, given a stack of matrices of shape (10,10,4,4) with 4 slices,
generates 4 stacks of shape (5,4,4). Due to the nature of the slicing, the number of slices might be slightly
greater that the number specified. Output matrices will be broadcastable by numpy’s broadcasting rules. Input
arrays are interpreted as a stack, with the last 2 dimensions staying intact.

Parameters

• matrices (np.ndarray) – matrix stacks to be sliced. All matrices must be of shapes
that can be broadcast by numpy’s broadcasting rules, with the additional restriction that
all matrices must have the same number of dimensions, even if some dimensions are of
size 1. For example, matrices of sizes (10,1,4,4) and (1,20,4,4) can be sliced
together.

• edges (iterable, optional) – The values along each axis that define the edges
of bins on an n-dimensional grid. For example, to slice a grid of hamiltonians with
stack_shape (10,10) into 4 pieces, edges could be defined as [0,5,10] for each of
the 2 stack axes.

• n_slices (int, optional) – The number of slices into which to break the matrix
stack. Ignored if the edges parameter is not None. Must be specified as an integer value
if edges is None, ignored otherwise. Defaults to None.

Yields

• tuple of slices – slicing for each corresponding matrix

• numpy.ndarray – Slice of hamiltonian stack
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Examples

>>> import numpy as np
>>> import rydiqule as rq

>>> M1 = np.ones((1,20,4,4))
>>> M2 = np.ones((20,1,4,4))
>>> M3 = np.ones((20,20,4,4))

>>> axis0_edges = np.array([0,10,20])
>>> axis1_edges = np.array([0,10,20])

>>> for idx,m1,m2, m3 in rq.matrix_slice(M1, M2, M3, edges=[axis0_edges, axis1_
→˓edges]):
>>> print(m1.shape, m2.shape, m3.shape)

(1, 10, 4, 4) (10, 1, 4, 4) (10, 10, 4, 4) (1, 10, 4, 4) (10, 1, 4, 4) (10, 10, 4, 4) (1, 10, 4, 4) (10, 1, 4, 4) (10,
10, 4, 4) (1, 10, 4, 4) (10, 1, 4, 4) (10, 10, 4, 4)

rydiqule.slicing.slicing.memory_size

rydiqule.slicing.slicing.memory_size(shape: Tuple[int, ...], item_size: int)→ int
Calculate the memory size, in bytes of an array with the given size and shape. Does not calculate the actual
array, just theoretical size since this function is intended to be used before attempting allocate an array that is
too large.

Parameters

• shape (list-like) – Shape of the array in question.

• item_size (int) – Size of an array element in bytes.

Returns
Expected memory size of array in bytes

Return type
int

6.1.10 rydiqule.solvers

Steady-state solvers of the Optical Bloch Equations.

Functions

solve_steady_state(sensor[, doppler, ...]) Finds the steady state solution for a system character-
ized by a sensor.

steady_state_solve_stack(eom, const) Helper function which returns the solution to the given
equations of motion
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rydiqule.solvers.solve_steady_state

rydiqule.solvers.solve_steady_state(sensor: Sensor, doppler: bool = False,
doppler_mesh_method: Optional[Union[UniformMethod,
IsoPopMethod, SplitMethod, DirectMethod]] = None,
sum_doppler: bool = True, weight_doppler: bool = True,
n_slices: Optional[int] = None)→ Solution

Finds the steady state solution for a system characterized by a sensor.

If insuffucent system memory is available to solve the system in a single call, system is broken into “slices” of
manageable memory footprint which are solved indivudually. This slicing behavior does not affect the result.
Can be performed with or without doppler averging.

Parameters

• sensor (Sensor) – The sensor for which the solution will be calculated.

• doppler (bool, optional) – Whether to calculate the solution for a
doppler-broadened gas. If True, only uses dopper brodening defined by kvec param-
eters for couplings in the sensoe, so setting this True without kvec definitions will
have no effect. Default is False.

• (dict (doppler_mesh_method) – If not None, should be a dictionary of meshing
parameters to be passed to doppler_classes(). See doppler_classes() for
more information on supported methods and arguments. If None, uses the de-
fault doppler meshing. Default is None.

• optional) – If not None, should be a dictionary of meshing parameters to be passed
to doppler_classes(). See doppler_classes() for more information on
supported methods and arguments. If None, uses the default doppler
meshing. Default is None.

• sum_doppler (bool) –Whether to average over doppler classes after the solve is com-
plete. Setting to Falsewill not perform the sum, allowing viewing of the weighted results
of the solve for each doppler class. In this case, an axis will be prepended to the solution for
each axis along which doppler broadening is computed. Ignored if doppler=False.
Default is True.

• weight_doppler (bool) – Whether to apply weights to doppler solution to perform
averaging. If False, will not apply weights or perform a doppler_average, regardless
of the value of sum_doppler. Changing from default intended only for internal use.
Ignored if doppler=False or sum_doppler=False. Default is True.

• n_slices (int or None, optional) – How many sets of equations to break
the full equations into. The actual number of slices will be the largest between this value
and the minumum number of slices to solve the system without a memory error. If None,
uses the minimum number of slices to solve the system without a memory error. Detailed
information about slicing behavior can be found inmatrix_slice(). Default isNone.

Notes

Note: If decoherence values are not sufficiently populated in the sensor, the resulting equations may be
singular, resulting in an error in numpy.linalg. This error is not caught for flexibility, but is likely the
culprit for numpy.linalg errors encountered in steady-state solves.

Note: The solution produced by this function will be expressed using rydiqule’s convention of converting a
density matrix into the real basis and removing the ground state to improve numerical stability.
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Note: If the sensor contains couplings with time_dependence, this solver will add those couplings at
their 𝑡 = 0 value to the steady-state hamiltonian to solve.

Returns
A bunch-type object contining information about the solution. Presently, only attribute “rho”
is added to the solution, corresponding to the density matrix of the steady state solution. Will
include solutions to all parameter value combinations if array-like parameters are specified.

Return type
Solution

Examples

A basic solve for a 3-level system would have a “density matrix” solution of size 8 (3^2-1)

>>> s = rq.Sensor(3)
>>> s.add_coupling((0,1), detuning = 1, rabi_freqency=1)
>>> s.add_coupling((1,2), detuning = 2, rabi_freqency=2)
>>> s.add_transit_broadening(0.1)
>>> sol = rq.solve_steady_state(s)
>>> print(type(sol))
>>> print(type(sol.rho))
>>> print(sol.rho.shape)
<class rydiqule.sensor_solution.Solution >
<class numpy.ndarray >
(8,)

Defining an array-like parameter will automatically calculate the density matrix solution for every value. Here
we use 11 values, resulting in 11 density matrices. The axis_labels attribute of the solution can clarify
which axes are which.

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling((0,1), detuning = det, rabi_freqency=1)
>>> s.add_coupling((1,2), detuning = 2, rabi_freqency=2)
>>> s.add_transit_broadening(0.1)
>>> sol = rq.solve_steady_state(s)
>>> print(sol.rho.shape)
>>> print(sol.axis_labels)
(11, 8)
[ (0,1)_detuning ]

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)
>>> s.add_coupling((0,1), detuning = det, rabi_freqency=1)
>>> s.add_coupling((1,2), detuning = det, rabi_freqency=2)
>>> s.add_transit_broadening(0.1)
>>> sol = rq.solve_steady_state(s)
>>> print(sol.rho.shape)
>>> print(sol.axis_labels)
(11, 11, 8)
[ (0,1)_detuning , (1,2)_detuning ]

If the solve uses doppler broadening, but not averaging for doppler is specified, there will be a solution axis
corresponding to doppler classes.

>>> s = rq.Sensor(3)
>>> det = np.linspace(-1,1,11)

(continues on next page)
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(continued from previous page)

>>> s.add_coupling((0,1), detuning = det, rabi_freqency=1)
>>> s.add_coupling((1,2), detuning = 2, rabi_freqency=2, kvec=(1,0,0))
>>> s.add_transit_broadening(0.1)
>>> sol = rq.solve_steady_state(s, doppler=True, sum_doppler=False)
>>> print(sol.rho.shape)
>>> print(sol.axis_labels)
(561, 11, 8)
[ doppler_0 , (0,1)_detuning ]

rydiqule.solvers.steady_state_solve_stack

rydiqule.solvers.steady_state_solve_stack(eom: ndarray, const: ndarray)→ ndarray
Helper function which returns the solution to the given equations of motion

Solves an equation of the form �̇� = 𝐴𝑥 + 𝑏, or a set of such equations arranged into stacks. Essentially just
wraps numpy.linalg.solve(), but included as its own function for modularity if another solver is found to be
worth invesitigating.

Parameters

• eom (numpy.ndarray) – An square array of shape (*l,n,n) representing the dif-
ferential equations to be solved. The matrix (or matrices) A in the above formula.

• const (numpy.ndarray) – An array or shape (*l,n) representing the constant in
the matrix form of the differential equation. The constant b in the above formula. Stack
shape *l must be consistent with that in the eom argument

Returns
A 1xn array representing the steady-state solution of the differential equation

Return type
numpy.ndarray

6.1.11 rydiqule.stack_solvers

Modules

rydiqule.stack_solvers.cyrk_solver
rydiqule.stack_solvers.
nbkode_solver
rydiqule.stack_solvers.nbrk_solver
rydiqule.stack_solvers.scipy_solver

rydiqule.stack_solvers.cyrk_solver

Functions

cyrk_solve(eoms_base, const_base, ...) Solve a set of Optical Bloch Equations (OBEs)
with rydiqule's time solving convention using CyRK's
cyrk_ode.
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rydiqule.stack_solvers.cyrk_solver.cyrk_solve

rydiqule.stack_solvers.cyrk_solver.cyrk_solve(eoms_base: ndarray, const_base: ndarray,
eom_time_r: ndarray, const_r: ndarray,
eom_time_i: ndarray, const_i: ndarray,
time_inputs: Sequence[Callable[[float],
complex]], t_eval: ndarray, init_cond:
ndarray, **kwargs)→ ndarray

Solve a set of Optical Bloch Equations (OBEs) with rydiqule’s time solving convention using CyRK’s
cyrk_ode.

Uses matrix components of the equations of motion provided by the methods of a Sensor(). Designed to
be used as a wrapped function within solve_time(). Builds and solves equations of motion according
rydiqule’s time solving conventions. Sets up and solves dx/dt = A(t)x + b(t)

Parameters

• eoms_base (numpy.ndarray) – The matrix of shape (*l,n,n) representing the
non time-varying portion of the matrix A in the equations of motion.

• const_base (numpy.ndarray) – The array of shape (*l, n) representing the
non time-varying portion of the vector b in the equations of motion.

• eoms_time_r (numpy.ndarraynumpy) – The matrix of shape (n_t, *l, n,
n) representing the real time-varying portion of the matrix A, where n_t is the length of
time_inputs. The ith slice along the first axis should be multiplied by the real part of
the ith entry in time_inputs.

• const_r (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the real time-varying portion of the vector b, where n_t is the length of time_inputs.
The ith slice along the first axis should be multiplied by the real part of the ith entry in
time_inputs.

• eoms_time_i (numpy.ndarray) – The matrix of shape (n_t, *l, n, n)
representing the imaginary time-varying portion of the matrix A, where n_t is the length
of time_inputs. The ith slice along the first axis should be multiplied by the imaginary
part of the ith entry in time_inputs.

• const_i (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the imaginary time-varying portion of the vector b, where n_t is the length of time_in-
puts. The ith slice along the first axis should be multiplied by the imaginary part of the
ith entry in time_inputs.

• time_inputs (list(callable)) – List of callable functions of length n_t. The
functions should take a single floating point as an input representing the time in microsec-
onds, and return a real or complex floating point value represent an electric field in V/m at
that time. Return type of each function must be the same for all inputs t.

• t_eval (numpy.ndarray) – Array of times to sample the integration at. This array
must have dtype of float64.

• init_cond (numpy.ndarray) – Matrix of shape (*l, n) representing the initial
state of the system.

• **kwargs (dict:) – Additional keyword arguments passed to the cyrk_ode.

Returns
The matrix solution of shape (*l,n,n_t) representing the density matrix of the system at
each time t.

Return type
numpy.ndarray

Raises
OverflowError – If system size exceeds cyrk backend limit of 65535 equations.: If we
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see this error a lot, consider getting CyRK project to increase it by changing type of y_size
from unisgned short.

rydiqule.stack_solvers.nbkode_solver

Functions

nbkode_solve(eoms_base, const_base, ...) Solve a set of Optical Bloch Equations (OBEs) using
rydiqule's time solving convention using numbakit-ode.

rydiqule.stack_solvers.nbkode_solver.nbkode_solve

rydiqule.stack_solvers.nbkode_solver.nbkode_solve(eoms_base: ndarray, const_base:
ndarray, eom_time_r: ndarray,
const_r: ndarray, eom_time_i:
ndarray, const_i: ndarray, time_inputs:
Sequence[Callable[[float], complex]],
t_eval: ndarray, init_cond: ndarray,
**kwargs)→ ndarray

Solve a set of Optical Bloch Equations (OBEs) using rydiqule’s time solving convention using numbakit-ode.

Uses matrix components of the equations of motion provided by the methods of a Sensor(). Designed to
be used as a wrapped function within solve_time(). Builds and solves equations of motion according
rydiqule’s time solving conventions. Sets up and solves dx/dt = A(t)x + b(t)

Parameters

• eoms_base (numpy.ndarray) – The matrix of shape (*l,n,n) representing the
non time-varying portion of the matrix A in the equations of motion.

• const (numpy.ndarray) – The array of shape (*l, n) representing the non
time-varying portion of the vector b in the equations of motion.

• eoms_time_r (numpy.ndarraynumpy) – The matrix of shape (n_t, *l, n,
n) representing the real time-varying portion of the matrix A, where n_t is the length of
time_inputs. The ith slice along the first axis should be multiplied by the real part of
the ith entry in time_inputs.

• const_r (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the real time-varying portion of the vector b, where n_t is the length of time_inputs.
The ith slice along the first axis should be multiplied by the real part of the ith entry in
time_inputs.

• eoms_time_i (numpy.ndarray) – The matrix of shape (n_t, *l, n, n)
representing the imaginary time-varying portion of the matrix A, where n_t is the length
of time_inputs. The ith slice along the first axis should be multiplied by the imaginary
part of the ith entry in time_inputs.

• const_i (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the imaginary time-varying portion of the vector b, where n_t is the length of time_in-
puts. The ith slice along the first axis should be multiplied by the imaginary part of the
ith entry in time_inputs.

• time_inputs (list(callable)) – List of callable functions of length n_t. The
functions should take a single floating point as an input representing the time in microsec-
onds, and return a real or complex floating point value represent an electric field in V/m at
that time. Return type of each function must be the same for all inputs t.

• t_eval (numpy.ndarray) – Array of times to sample the integration at. This array
must have dtype of float64.
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• init_cond ((numpy.ndarray)) – Matrix of shape (*l, n) representing the
initial state of the system.

• **kwargs (dict) – Additional keyword arguments passed to the nbkode solver con-
structor.

Returns
The matrix solution of shape (*l,n,n_t) representing the density matrix of the system at
each time t.

Return type
numpy.ndarray

rydiqule.stack_solvers.nbrk_solver

Functions

nbrk_solve(eoms_base, const_base, ...) Solve a set of Optical Bloch Equations (OBEs)
with rydiqule's time solving convention using CyRK's
nbrk_ode.

rydiqule.stack_solvers.nbrk_solver.nbrk_solve

rydiqule.stack_solvers.nbrk_solver.nbrk_solve(eoms_base: ndarray, const_base: ndarray,
eom_time_r: ndarray, const_r: ndarray,
eom_time_i: ndarray, const_i: ndarray,
time_inputs: Sequence[Callable[[float],
complex]], t_eval: ndarray, init_cond:
ndarray, **kwargs)→ ndarray

Solve a set of Optical Bloch Equations (OBEs) with rydiqule’s time solving convention using CyRK’s
nbrk_ode.

Uses matrix components of the equations of motion provided by the methods of a Sensor(). Designed to
be used as a wrapped function within solve_time(). Builds and solves equations of motion according
rydiqule’s time solving conventions. Sets up and solves dx/dt = A(t)x + b(t)

Parameters

• eoms_base (numpy.ndarray) – The matrix of shape (*l,n,n) representing the
non time-varying portion of the matrix A in the equations of motion.

• const (numpy.ndarray) – The array of shape (*l, n) representing the non
time-varying portion of the vector b in the equations of motion.

• eoms_time_r (numpy.ndarraynumpy) – The matrix of shape (n_t, *l, n,
n) representing the real time-varying portion of the matrix A, where n_t is the length of
time_inputs. The ith slice along the first axis should be multiplied by the real part of
the ith entry in time_inputs.

• const_r (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the real time-varying portion of the vector b, where n_t is the length of time_inputs.
The ith slice along the first axis should be multiplied by the real part of the ith entry in
time_inputs.

• eoms_time_i (numpy.ndarray) – The matrix of shape (n_t, *l, n, n)
representing the imaginary time-varying portion of the matrix A, where n_t is the length
of time_inputs. The ith slice along the first axis should be multiplied by the imaginary
part of the ith entry in time_inputs.
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• const_i (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the imaginary time-varying portion of the vector b, where n_t is the length of time_in-
puts. The ith slice along the first axis should be multiplied by the imaginary part of the
ith entry in time_inputs.

• time_inputs (list(callable)) – List of callable functions of length n_t. The
functions should take a single floating point as an input representing the time in microsec-
onds, and return a real or complex floating point value represent an electric field in V/m at
that time. Return type of each function must be the same for all inputs t.

• t_eval (numpy.ndarray) – Array of times to sample the integration at. This array
must have dtype of float64.

• init_cond ((numpy.ndarray)) – Matrix of shape (*l, n) representing the
initial state of the system.

• **kwargs (dict) – Additional keyword arguments passed to nbrk_ode.

Returns
The matrix solution of shape (*l,n,n_t) representing the density matrix of the system at
each time t.

Return type
numpy.ndarray

rydiqule.stack_solvers.scipy_solver

Functions

scipy_solve(eoms_base, const, eom_time_r, ...) Solve a set of Optical Bloch Equations (OBEs)
with rydiqule's time solving convention using scipy's
solve_ivp.

rydiqule.stack_solvers.scipy_solver.scipy_solve

rydiqule.stack_solvers.scipy_solver.scipy_solve(eoms_base: ndarray, const: ndarray,
eom_time_r: ndarray, const_r: ndarray,
eom_time_i: ndarray, const_i: ndarray,
time_inputs: Sequence[Callable[[float],
complex]], t_eval: ndarray, init_cond:
ndarray, eqns: Literal['loop', 'comp'] =
'loop', **kwargs)→ ndarray

Solve a set of Optical Bloch Equations (OBEs) with rydiqule’s time solving convention using scipy’s
solve_ivp.

Uses matrix components of the equations of motion provided by the methods of a Sensor(). Designed to
be used as a wrapped function within solve_time(). Builds and solves equations of motion according
rydiqule’s time solving conventions. Sets up and solves dx/dt = A(t)x + b(t)

Parameters

• eoms_base (numpy.ndarray) – The matrix of shape (*l,n,n) representing the
non time-varying portion of the matrix A in the equations of motion.

• const (numpy.ndarray) – The array of shape (*l, n) representing the non
time-varying portion of the vector b in the equations of motion.

• eoms_time_r (numpy.ndarraynumpy) – The matrix of shape (n_t, *l, n,
n) representing the real time-varying portion of the matrix A, where n_t is the length of
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time_inputs. The ith slice along the first axis should be multiplied by the real part of
the ith entry in time_inputs.

• const_r (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the real time-varying portion of the vector b, where n_t is the length of time_inputs.
The ith slice along the first axis should be multiplied by the real part of the ith entry in
time_inputs.

• eoms_time_i (numpy.ndarray) – The matrix of shape (n_t, *l, n, n)
representing the imaginary time-varying portion of the matrix A, where n_t is the length
of time_inputs. The ith slice along the first axis should be multiplied by the imaginary
part of the ith entry in time_inputs.

• const_i (numpy.nd_array) – The matrix of shape (n_t, *l, n) representing
the imaginary time-varying portion of the vector b, where n_t is the length of time_in-
puts. The ith slice along the first axis should be multiplied by the imaginary part of the
ith entry in time_inputs.

• time_inputs (list(callable)) – List of callable functions of length n_t. The
functions should take a single floating point as an input representing the time in microsec-
onds, and return a real or complex floating point value represent an electric field in V/m at
that time.

• t_eval (numpy.ndarray) – Array of times to sample the integration at.

• init_cond ((numpy.ndarray)) – Matrix of shape (*l, n) representing the
initial state of the system.

• eqns ({"loop", "comp"}) – Function used of generating equations of motion. One
of “loop” or “comp”, corresponding to defining time-dependent equations of motion as a
loop over time-dependent components or with a list comprehension. List comprehensions
are preferred for longer solves and loops are preferred for shorter solves.

• **kwargs (dict) – Additional keyword arguments passed to the nbkode solver con-
structor.

Returns
The matrix solution of shape (*l,n,n_t) representing the density matrix of the system at
each time t.

Return type
numpy.ndarray

6.1.12 rydiqule.timesolvers

Solvers for time domain analysis with an arbitrary RF field

Functions

generate_eom_time(hamiltonians_time) Generates the Optical Bloch Equations for just the rf
terms.

solve_eom_stack(eoms_base, const, ...) Solve a stack of equations of motion with shape (*l,
n, n) in the time domain.

solve_time(sensor, end_time, num_pts[, ...]) Solves the response of the optical sensor in the time
domain given the its time-dependent inputs
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rydiqule.timesolvers.generate_eom_time

rydiqule.timesolvers.generate_eom_time(hamiltonians_time: ndarray)→ Tuple[ndarray,
ndarray]

Generates the Optical Bloch Equations for just the rf terms. Uses the convention of the hamiltonian_rf return
of the get_time_hamiltonian function. The equations of motion returned are assumed to be used in conjunction
with an electric field.

Parameters
hamiltonians_time (numpy.ndarray) – A matrix of shape (basis_size, basis_size),
where the off-diagonal terms (i,j) are the dipole matrix elements in e a_b of the transition
coupling state i to state j.

Returns

• numpy.ndarray (Part of the Optical Bloch Equations corresponding to time_dependent
couplings.) – To produce equations to solve, these values must be multiplied by an electric
field in V/m.

• numpy.ndarray (Constant term of the time-dependent portion of the equations) – of mo-
tion. Same units as the equations themselves.

rydiqule.timesolvers.solve_eom_stack

rydiqule.timesolvers.solve_eom_stack(eoms_base: ndarray, const: ndarray, eom_time_r: ndarray,
const_r: ndarray, eom_time_i: ndarray, const_i: ndarray,
time_inputs: List[Callable[[float], complex]], t_eval:
ndarray, init_cond: ndarray, solver, **kwargs)→ ndarray

Solve a stack of equations of motion with shape (*l, n, n) in the time domain.

Companion function to solve_time(), but can be invoked on its for equations already formatted.

Parameters

• eoms_base (numpy.ndarray) – Array of shape (*l, n, n) represnting the part
of equations of motion of the system which do not respond to external fields.

• const (numpy.ndarray) – constant term of shape (n,) added in differential equations.
Typically generated by generate_eom().

• eoms_time_r (list[numpy.ndarray]) – list of arrays of shape (ba-
sis_size^2-1, basis_size^2-1) representing the parts of the OBEs with
a real-valued time-dependence. In the solver, this array will be multiplied by a
time-dependent rabi frequency. Typically a matrix of mostly zeros, with non-zero terms
corresponding to a particular time-dependent coupling

• const_r (numpy.ndarray) – Constant term of shape (n,) added in a real
time-dependent portion of differential equations. Typically generated by gener-
ate_eom_time().

• eoms_time_i (numpy.ndarray) – list of arrays of shape (basis_size^2-1,
basis_size^2-1) representing the parts of the OBEs with an imaginary-valued
time-dependence. In the solver, this array will be multiplied by a time-dependent rabi
frequency.

• const_i (numpy.ndarray) – constant term of shape (n,) added in an imagi-
nary time-dependent portion of differential equations. Typically generated by gener-
ate_eom_time().

• t_eval (numpy.ndarray) – 1-D array of times, inmicroseconds, at which to evaluate
the solution. Does not affect evaluations in the solve.
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• time_inputs (list[function float->float]) – List of functions which
represent the rabi frequency of a field as a function of time. list length should be identical
to the length of obes_time. In the solver, the i th time input will be evaluated at time t and
multiplied by the i th entry of obes_time.

• tuple(float) (time_range) – Pair of values represent the start and end time, in
microseconds, of the simulation.

• init_cond (numpy.ndarray or None, optional) – Density matrix representing the ini-
tial state of the system. If specified, the shape should be either (n) in the case of a single
initial condition for all parameter values, or should be of shape (*l, n) matching the
output shape of a steady state solve if the initial condition may be different for different
combinations of parameters. If None, will solve the problem in the steady state with all
time-dependent fields “off” and use the solution as the initial condition for the time behav-
ior. Other possible manual options might include a matrix populated by zeros representing
the entire population in the ground state. Defaults to None.

Returns
Flattened solution array corresponding to time points.

Return type
numpy.ndarray

rydiqule.timesolvers.solve_time

rydiqule.timesolvers.solve_time(sensor: Sensor, end_time: float, num_pts: int, init_cond:
Optional[ndarray] = None, doppler: bool = False,
doppler_mesh_method: Optional[Union[UniformMethod,
IsoPopMethod, SplitMethod, DirectMethod]] = None,
sum_doppler: bool = True, weight_doppler: bool = True, n_slices:
Optional[int] = None, solver: Union[Callable, Literal['scipy',
'nbkode', 'cyrk', 'nbrk']] = 'scipy', **kwargs)→ Solution

Solves the response of the optical sensor in the time domain given the its time-dependent inputs

If insuffucent system memory is available to solve the system all at once, system is broken into “slices” of
manageable memory footprint which are solved indivudually. This slicing behavior does not affect the result.
All couplings that include a “time_dependence” argument will be solved in the time domain.

A number of solver backends work with rydiqule, but the default "scipy" ivp solver is the is recommended
backend in almost all cases, as it is the most fully-featured and documented. Advanced users have the ablity to
define their own solver backends by creating a function that follows the call signature for rydiqule timesolver
backends. Additional arguments to the solver backend can be supplied with **kwargs.

Parameters

• sensor (Sensor) – The sensor object representing the atomic/laser arrangement of the
system.

• end_time (float) – Amount of time, in microseconds, for which to simulate the sys-
tem

• num_pts (int) – The number of points along the range (0, end_time) for which
the solution is evaluated. This does not affect the number of funtion evaluations during the
solve, rather the spacing of the points in the reported solution.

• init_cond (numpy.ndarray or None, optional) – Density matrix representing the initial
state of the system. If specified, the shape should be either (n) in the case of a single
initial condition for all parameter values, or should be of shape (*l, n) matching the
output shape of a steady state solve if the initial condition may be different for different
combinations of parameters. If None, will solve the problem in the steady state with all
time-dependent fields at their 𝑡 = 0 value and use the solution as the initial condition.
Other possible manual options might include a matrix populated by zeros representing the
entire population in the ground state. Defaults to None.
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• doppler (bool, optional) – Whether to account for doppler shift among moving
atoms in the gas. If True, the solver will implicitly define a velocity distribution for particles
in the cell, solve the problem for each velocity class, and return a weighted average of the
results. Note that solving in this manner carries a substantial performance penalty, as
each doppler velocity class is solved as its own problem. If solved with doppler, only axis
specified by a "kvec" argument in one of the sensor couplings
will be average over. The time solver currently supports
doppler averaging in any number of spatial dimensions, up
to the limit of 3 imposed by the macroscopic physical world.
Defaults to False.

• doppler_mesh_method (dict, optional) – Dictionary that controls the
doppler meshing method. Exact details of this are found in the documentation of
doppler_classes(). Ignored if doppler=False. Default is None.

• sum_doppler (bool, optional) – Whether to average over doppler classes af-
ter the solve is complete. Setting to false will not perform the sum, allowing viewing of
the weighted results of the solve for each doppler class. Ignored if doppler=False.
Default is True.

• weight_doppler (bool) – Whether to apply weights to doppler solution to perform
averaging. If False, will not apply weights or perform a doppler_average, regardless
of the value of sum_doppler. Changing from default intended only for internal use.
Ignored if doppler=False or sum_doppler=False. Default is True.

• n_slices (int or None, optional) – How many sets of equations to break
the full equations into. The actual number of slices will be the largest between this value
and the minumum number of slices to solve the system without a memory error. If None,
solver uses the minimum number of slices required to solve without a memoryError.
Defaults to None.

• solver ({"scipy", "nbkode", "cyrk", "nbrk"} or callable) – The
backend solver used to solve the ivp generated by the sensor. All string values correspond
to backend solvers built in to rydiqule. Valid string values are:

– ”scipy”: Solves equations with scipy.integrate.solve_ivp(). The default,
most stable, and well-supported option.

– ”nbkode”: Solves equations with the jit-compiled Runge-Kutta-45 solver in
numbakit-ode. May be faster for very long time solves with many timesteps.

– ”cyrk”: Solves jit-compiled equations with a cython compiled RK solver from CyRK.
Due to some jit compilation, only faster for moderate length problems (ie problems with
a moderate number of required time steps).

– ”nbrk”: Solves equations with the jit-compiled RK solver from CyRK. Due to extensive
jit compilation, only faster for very long solves (ie problems with a large number of
required time steps).

Additionally, can be specified with a callable that matches rydiqule’s time-solver con-
vention, enabling using a custom solver backend.

Note: Unless otherwise noted, backends other than scipy are considered experimental.
Issues with their use are considered features not fully implemented rather than bugs.

• **kwargs (Additional keyword arguments passed to the back-
end solver.) – See documentation of the relevant solver (i.e. scipy.integrate.
solve_ivp()) for details and supported arguments.

Returns
A bunch-type object contining information about the solution. Timesolver specific attributes
are t and init_cond, corresponding respectively to the times at which the solution is sam-
pled and the initial conditions used for the solve.
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Return type
Solution
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CHAPTER

SEVEN

DEVELOPER DOCUMENTATION

These pages contain documentation relevant to the development of rydiqule. If you with to work on the source code
of rydiqule, details relating to policies and tools can be found here.

7.1 Unit Tests

Rydiqule comes bundled with a suite of unit tests that confirm basic functionality of the various components and
checks for robustness to erroneous or unexpected arguments. We strive to follow the testing methodology and prac-
tices employed by numpy. We agree with the stipulation made there, that

“Long experience has shown that by far the best time to write the tests is before you write or change the
code - this is test-driven development”

7.1.1 pytest

Rydiqule takes advantage of the pytest testing framework to run unit and integration tests of the code base. The
full test suite is run from the project base directory with the command

pytest tests/

This command will run all tests in the tests/ subdirectory. These tests cover a wide range of functionality as well
as a number of representative integrations that demonstrate how the code can be used to generate end results.

Marks

The tests are marked based on the type of test that is being performed, and pytest can be told to only run certain
tests. For example, this command will only run tests relating to the steady state solving functionality:

pytest -m steady_state

You can also exclude a specific group of tests. For example, this command will exlcude tests marked as slow.

pytest -m "not slow"

Marks specifications can be combined using standard boolean keywords as well. The following will run all the time
tests that are not slow.

pytest -m "time and not slow"

The available marks can be listed using pytest --markers. The markers we use are
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Table 7.1: Markers
Marker Description
slow Marks a test as taking a long time to run
high_memory Marks a test needing a lot of RAM
steady_state Marks a test as using the steady-state solver
time Marks a test as using the time solver
doppler Marks a test that incorporates Doppler averaging.
experiments Marks a test that represents a full experiment.
util Marks a test of the ancillary utilties.
structure Marks a test of the definition of the atomic system.
dev Used to temporarily mark a single test that is being developed so it can run independently.

Coverage

If you install the pytest-cov plugin, you can check code coverage of the tests by modifying the command to read.

pytest --cov=rydiqule tests/

Durations

If you want to see which tests take the longest to complete, you can use the --durations=n flag to give the n
longest time tests:

pytest --durations=3 tests/

Settings the durations flag to 0 will cause pytest to report the time taken for all tests run.

7.2 Type Hinting

Rydiqule employs the optional type hinting capabilities of python. These type annotations are not checked or enforced
at runtime by python itself. Rather, they provide hints to fellow programmers and users about the types of function
arguments, return types, and class variables.

We use the mypy static type checking library to read these hints and catch type errors within the code base. To run
this check locally, install the mypy python package and run the following command from the package root directory.

mypy

This command will automatically read configuration options set in the mypy.ini file. Further optional flags can
be passed to the command to override or add optional behaviors. Initial run of the mypy takes some time, however
subsequent runs take advantage of local caching to increase analysis speed. Using the mypy daemon mode can further
increase analysis speed if necessary.

An html report of the mypy coverage can be generated using the following command.

mypy --html-report .mypy_report

This command will store the html pages in the specified directory .mypy_report. Note that this command takes
a long time to run every time, as it cannot use the cache.
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7.3 Linting

We use the ruff linting package to help enforce code style and consistent readability. It can be run locally from the
project root folder by calling the command ruff check .. It pulls options for running the command from the
ruff.toml configuration file.

If you intend to work on the rydiqule codebase, it is good practice to incorporate automatic linting within your code
editor.

Linting can be disabled for a single line by using the # noqa tag at the end of the line. Specific error codes can be
specified by # noqa: E501, which ignores only line length errors.

7.4 Building the Documentation

The Rydiqule documentation can be built locally from the source repository using sphinx. To do so, you will need
to install the sphinx and sphinx-rtd-theme packages.

7.4.1 html

An html webpage version of the documentation formatted in the read-the-docs style can be made by running the
following command from the docs/ subdirectory.

make html

The output will be located in the docs/build/html/ subdirectory. The home page is index.html. The html
documentation has the best formatting by default and is the easiest to use.

7.4.2 latexpdf

A pdf version of the documentation can be built using

make latexpdf

The output will be located in docs/build/latex and is called rydiqule.pdf. Note that building the pdf
requires perl and a functioning latex installation with the latexmk package. You will also require the GNU
FreeFont collection. On Windows, these can be installed manually at the system level or via the MikTeX package
gnu-freefont. This build also requires a great many other latex packages in addition to latexmk. It is easiest
to install these packages on the fly as needed, if your latex distribution supports that.

Given the difficulty of building this type of documentation, we attempt to include an updated pdf with each relase.
It is locaed in the docsbuildlatex directory.

7.4.3 epub

There is also the ability to build the documentation in the EPUB format, if desired.

make epub
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%matplotlib inline

%load_ext autoreload
%autoreload 2

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.transform import Rotation as R

import rydiqule as rq
from rydiqule.sensor_utils import get_rho_ij
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CHAPTER

EIGHT

3-PHOTON RYDBERG EIT

We demonstrate three photon coherent excitations using the system studied in Taicharoen et. al. PRA 063427 (2019).
This is a rubidium vapor with a 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 → 28𝐹7/2 excitation pathway, with corresponding optical
fields of 780 nm, 776 nm, and 1260 nm. These fields are labelled probe, dressing, and coupling, respectively.

Here we demonstrate using rydiqule to solve this system under three conditions:

1) Cold atoms

2) Warm atoms, colinear optical beams

3) Warm atoms, doppler-free angles

Because there are three optical fields, the basic coherent feature observed, on resonance, is expected to the absorptive
(rather than transmissive like EIT). Going to warm atoms, this feature broadens signficantly, and other coherent
features can arise at non-zero detunings of the fields. Going to a Doppler-free excitation in warm atoms, we find
that a transmissive feature is observed on resonance. This feature is significantly narrower than those observed in the
colinear case.

8.1 Doppler-free, 3 photon excitation

With all three fields resonant, we expect to see Electromagnetically-Induced-Absorption (EIA) instead of EIT.

detunings = np.linspace(-20,20,41)

probe = { states :(0,1), rabi_frequency :2*np.pi*0.1, detuning :2*np.pi*0}
dress = { states :(1,2), rabi_frequency :2*np.pi*2}
couple = { states :(2,3), rabi_frequency :2*np.pi*2, detuning :2*np.pi*detunings}

basis_size = 4
gam = np.zeros((basis_size,basis_size),dtype=np.float64)
gam[1,0] = 6
gam[2,1] = 0.66
gam[3,2] = 10e-3
gamma_matrix = 2*np.pi*gam

sensor = rq.Sensor(basis_size)
sensor.add_couplings(probe,couple)
sensor.set_gamma_matrix(gamma_matrix)

dress[ detuning ] = 2*np.pi*0
sensor.add_couplings(dress)
sols = rq.solve_steady_state(sensor)

fig, ax = plt.subplots()
ax.plot(detunings, get_rho_ij(sols.rho,1,0).imag)
ax.set_xlabel("Coupling Laser Detuning (MHz)")
ax.set_ylabel(r"Im($\rho_{10}$)")
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Text(0, 0.5, Im($\rho_{10}$) )

8.2 Colinear 3-photon Excitation with Doppler Averaging

We can take our three fields and configure them in the (+,-,-) configuration of Taicharoen (2019). We will need to do
Doppler averaging along the colinear axis to get the result. The magnitude of a field’s kvector is defined such that it is
the magnitude of the Doppler shift associated with the most probable speed of the Maxwell-Boltzmann distribution
(𝑣𝑃 ≡

√︀
2𝑘𝐵𝑇/𝑚, where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the gas temperature, and 𝑚 is the atomic mass). It

should have units of Mrad/s like all other specifies quantities.

The following reproduces Figure 2b from Taicharoen et. al. PRA 063427 (2019). Note that having all fields resonant
results in an EIA feature, but it now much broader than the Doppler-free case above. If the dressing field is detuning,
EIT features are observed.

detunings = np.linspace(-200,200,201)

kp = 2*np.pi/780e-3*np.array([1,0,0])
kd = 2*np.pi/776e-3*np.array([-1,0,0])
kc = 2*np.pi/1260e-3*np.array([-1,0,0])
vP = 242.387 # m/s

###
probe = { states :(0,1), rabi_frequency :2*np.pi*10, kvec :vP*kp, detuning : 0}
dress = { states :(1,2), rabi_frequency :2*np.pi*25, kvec :vP*kd}
couple = { states :(2,3), rabi_frequency :2*np.pi*18, detuning :2*np.
→˓pi*detunings, kvec :vP*kc}
###

n = 4
sensor = rq.Sensor(n)
sensor.add_decoherence((1,0), 2*np.pi*6)

(continues on next page)
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(continued from previous page)

sensor.add_decoherence((2,1), 2*np.pi*0.66)
sensor.add_decoherence((3,2), 2*np.pi*10e-3)

sensor.add_couplings(probe,couple)

dress[ detuning ] = 2*np.pi*0
sensor.add_couplings(dress)
sols0 = rq.solve_steady_state(sensor,doppler=True)

dress[ detuning ] = 2*np.pi*20
sensor.add_couplings(dress)
solsp20 = rq.solve_steady_state(sensor,doppler=True)

dress[ detuning ] = -2*np.pi*20
sensor.add_couplings(dress)
solsm20 = rq.solve_steady_state(sensor,doppler=True)

fig, ax = plt.subplots(figsize=(8,6))
ax.plot(detunings, get_rho_ij(sols0.rho,1,0).imag, label="$\\Delta_d= 0$ MHz")
ax.plot(detunings, get_rho_ij(solsp20.rho,1,0).imag, label="$\\Delta_d= +20$ MHz")
ax.plot(detunings, get_rho_ij(solsm20.rho,1,0).imag, label="$\\Delta_d= -20$ MHz")
ax.set_xlabel("Coupling Laser Detuning (MHz)")
ax.set_ylabel(r"Im($\rho_{10}$)")
ax.legend()

<matplotlib.legend.Legend at 0x21861422640>
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8.3 Doppler-Free Angles

Wecan take the same co-propagating system, and instead change the angles of the three beams such that 𝑘𝑝+𝑘𝑑+𝑘𝑐 ≈
0.

We now need to do Doppler averaging in two orthogonal dimensions. Rydiqule automatically detects how many
non-zero dimensions are present in the field kvectors and averages over the appropriate number of spatial dimensions.

detunings = np.linspace(-20,20,21)

kp = 2*np.pi/780e-3*np.array([1,0,0])
kd = 2*np.pi/776e-3*np.array([-1,0,0])
kc = 2*np.pi/1260e-3*np.array([-1,0,0])
vP = 242.387 # m/s

# rotate to doppler free angles
rd = R.from_euler( z ,-35.964,degrees=True)
rc = R.from_euler( z ,72.4718,degrees=True)
kdDF = rd.apply(kd)
kcDF = rc.apply(kc)

probe = { states :(0,1), rabi_frequency :2*np.pi*10, kvec :vP*kp, detuning :0}
dress = { states :(1,2), rabi_frequency :2*np.pi*25, kvec :vP*kdDF}
couple = { states :(2,3), rabi_frequency :2*np.pi*18, detuning :2*np.
→˓pi*detunings, kvec :vP*kcDF}

n = 4
sensor = rq.Sensor(n)
sensor.add_decoherence((1,0), 2*np.pi*6)
sensor.add_decoherence((2,1), 2*np.pi*0.66)
sensor.add_decoherence((3,2), 2*np.pi*10e-3)

sensor.add_couplings(probe,couple)

print( Residual fractional kvector sum due to round-off errors )
print((kp+kdDF+kcDF)/np.sqrt(kp.dot(kp)))

Residual fractional kvector sum due to round-off errors
[-1.41309045e-08 -4.99652620e-07 0.00000000e+00]

dress[ detuning ] = 2*np.pi*0
sensor.add_couplings(dress)
sols0DF = rq.solve_steady_state(sensor,doppler=True)

fig, ax = plt.subplots()
ax.plot(detunings, get_rho_ij(sols0DF.rho,1,0).imag)
ax.set_xlabel("Coupling Laser Detuning (MHz)")
ax.set_ylabel(r"Im($\rho_{10}$)")

Text(0, 0.5, Im($\rho_{10}$) )
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We observe a significantly narrower feature than in the collinear case, and it is now EIT instead of EIA.

The authors recognize financial support from the Defense Advanced Research Projects Agency (DARPA). Rydiqule
has been approved for unlimited public release by DEVCOMArmy Research Laboratory and DARPA. This software
is released under the xx licence through the University ofMarylandQuantumTechnology Center. The views, opinions
and/or findings expressed here are those of the authors and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government.
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CHAPTER

NINE

CALCULATING SNR

Rydiqule contains the function rydiqule.get_snr() function that will take a Sensor or Cell and calculate the
expected SNR for one axis of the solve. Below we demonstrate the use of this function to numerically confirm the
analytic results of Meyer et. al. PRA 104, 043103 (2021) Eqs. 12 & 13:

Ω(opt)
𝑝 ≈

√︀
Γ(2𝛾 + Γ𝑟 + Γ𝑐)

Ω(opt)
𝑐 ≈

√
2Ω(opt)

𝑝

These show the optical probe and coupling Rabi frequencies for resolving Rydberg state shifts in a 2-color Rydberg
EIT measurement, in an optically-thin with no Doppler broadening.

import numpy as np
import rydiqule as rq
import matplotlib.pyplot as plt

%load_ext autoreload
%autoreload 2

The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload

Manually define representative kappa and eta constants for a Rb85 sensor. These are necessary to find the SNR in
experimental units and must be supplied by the user when calculating using a Sensor. If using a Cell, these constants
are automatically calculated and do not need to be passed to get_snr.

The definition of these numerical factors is found in Meyer et. al. PRA 104, 043103 (2021) Eqs. 5 & 7.

𝜅 =
𝜔𝑝𝑛𝜇

2

2𝑐𝜖0ℎ

𝜂 =

√︃
𝜔𝜇2

2𝑐𝜖0ℎ𝐴

kappa = 28974.8787
eta = 0.00135882
probe_freq = 2.416e9
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9.1 1D Optimum

Here we demonstrate calculating the SNR for resolving a phase shift due to an RF Rydberg coupling vs probe Rabi
frequency. We have chosen a far-detuned RF coupling to ensure Stark shifts are linear.

##Set up a simplified Rb Sensor
basis_size = 4
Rb_sensor = rq.Sensor(basis_size)
Rb_sensor.set_experiment_values(probe_freq = probe_freq,probe_tuple = (0,1),

kappa = kappa, eta = eta, cell_length = .000001)

red_rabi = np.linspace(0.1,6,100)
blue_rabi = np.linspace(0.1,4,101)
blue_rabi_1 = 1
my_step = np.array([1, 1.1])
probe = { states : (0,1), rabi_frequency : red_rabi, detuning : 0, label :
→˓ probe }
couple = { states : (1,2), rabi_frequency :blue_rabi_1, detuning : 0, label :
→˓ couple }
rf = { states : (2,3), rabi_frequency : my_step, detuning :20, label : rf }

Rb_sensor.add_couplings(probe,couple, rf)

#simplify the gamma matrix to match predictions
gam = np.zeros((basis_size, basis_size))
gam[2,0] = 0.1
gam[3,0] = 0.01
gam[1,0] = 6.0
Rb_sensor.set_gamma_matrix(gam)

To calculate the SNR vs a specific parameter, that parameter must be list-like with at least two elements. So calculated
vs RF Rabi frequency, we have specified two Rabi frequency values very close to each other to measure the local linear
sensitivity. More values can be added to this list to see if sensitivity changes for larger changes in the parameter, which
indicates nonlinear response.

rq.draw_diagram(Rb_sensor)

<rydiqule.energy_diagram.ED at 0x1da48b14b20>
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We call get_snr with the Sensor to calculate with, the label of the swept parameter to calculate SNR against,
the tuple of the probing transition to get measurable parameters from, which quadrature the probing field is being
detected in, and the kappa and eta numerical factors.

snrs, param_mesh = rq.get_snr(Rb_sensor, param_label = rf_rabi_frequency ,
phase_quadrature = True)

Using Sensor.axis_labels() we can identify which axis rydiqule has used for the swept parameters. This
allows us to correctly index out the appropriate solutions for analysis. In particular, we need to index the sensitivity
axis to get the sensitivity at the second RF Rabi frequency in the list (relative to the first).

#print the axis labels
Rb_sensor.axis_labels()

[ probe_rabi_frequency , rf_rabi_frequency ]

snrs_final = snrs[:,1]
param_mesh_final=np.array(param_mesh)[:,:,1]

We can plot the SNR as a function of probe rabi frequency. The vertical line represents the analytic optimum value
for the probe Rabi frequency.

fix, ax = plt.subplots(figsize = (2,2))
ax.plot(param_mesh_final[0], snrs_final)
ax.set_xlabel("Red Rabi Freq [Mrad/s]")
ax.set_ylabel("SNR in 1 sec.")
ax.set_title( RF LO = 1 Mrad/s \n RF Signal = 0.1 Mrad/s )
ax.axvline(blue_rabi_1/np.sqrt(2),0,3, color = k )

<matplotlib.lines.Line2D at 0x1da4ba95fd0>
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9.2 2D Optimum - Fnd Optimized Ω𝑝 and Ω𝑐 for best SNR

We can also calculate the SNR versus many different axis. Here we calculate versus both the probe and coupling Rabi
frequencies.

couple = { states : (1,2), rabi_frequency : blue_rabi, detuning : 0, label :
→˓ couple }

Rb_sensor.add_couplings(probe,couple, rf)

snrs, param_mesh = rq.get_snr(Rb_sensor, param_label = rf_rabi_frequency , phase_
→˓quadrature = True)

Rb_sensor.axis_labels()

[ probe_rabi_frequency , couple_rabi_frequency , rf_rabi_frequency ]

snrs_final = snrs[:,:,1]
param_mesh_final=np.array(param_mesh)[:,:,:,1]

predictedOptimumProbe = np.sqrt(gam[1,0]*gam[2,0])
predictedOptimumCouple = np.sqrt(2*gam[1,0]*gam[2,0])
print(f Predicted optimum probe Rabi frequency: {predictedOptimumProbe:.3f} Mrad/s
→˓ )
print(f Predicted optimum coupling Rabi frequency: {predictedOptimumCouple:.3f}␣
→˓Mrad/s )

Predicted optimum probe Rabi frequency: 0.775 Mrad/s
Predicted optimum coupling Rabi frequency: 1.095 Mrad/s

We plot the SNR versus both Rabi frequencies using a contour plot. We have overlaid the analytic predictions for the
optimal SNR. Compare Figure 5(a) of Meyer et. al.

fig, ax = plt.subplots(figsize = (6,4))
CS = ax.contourf(param_mesh_final[0], param_mesh_final[1], snrs_final)
fig.colorbar(CS)
ax.set_xlabel( probe rabi frequency (Mrad/s) )
ax.set_ylabel( coupling rabi frequency (Mrad/s) )
ax.plot(predictedOptimumProbe, predictedOptimumCouple, * , color = C4 ,␣
→˓markersize = 10)

(continues on next page)
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(continued from previous page)

ax.plot([0,10,20], [0,np.sqrt(2)*10,np.sqrt(2)*20 ], -- , color = black )
ax.set_title("SNR vs Probe and Coupling (off res field)")
ax.set_ylim((0,4))
ax.set_xlim((0,4))

ax.annotate("prediction from\narXiv:2105.10494 Eqs 12,13",
xy=(predictedOptimumProbe, predictedOptimumCouple), xycoords= data ,
xytext=(60,-10), textcoords= offset points ,
arrowprops=dict(arrowstyle= -> ),
bbox=dict(boxstyle= round )

)

Text(60, -10, prediction fromnarXiv:2105.10494 Eqs 12,13 )

The authors recognize financial support from the US Army and Defense Advanced Research Projects Agency
(DARPA). Rydiqule has been approved for unlimited public release by DEVCOM Army Research Laboratory and
DARPA. This software is released under the xx licence through the University of Maryland Quantum Technology
Center. The views, opinions and/or findings expressed here are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.
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CHAPTER

TEN

RF HETERODYNE WITH DOPPLER EXAMPLE

This notebook demonstrates two-tone detection using a Rydberg sensor in the time domain with Doppler averaging.
An RF local oscillator (LO) and signal (sig) are imposed on the Rydberg sensor. This is useful for RF phase detection,
and can be used to linearize the detection, as shown below. The main results of this example showing how different
levels of Doppler averaging affect the beat signal size of the sensor.

import datetime
from numba import vectorize, float64
##***LAST UPDATE***##
now = datetime.datetime.now()
print(now)

2023-10-11 10:52:41.251854

10.1 Imports

import numpy as np
import rydiqule as rq
import matplotlib.pyplot as plt

%load_ext autoreload
%autoreload 2

10.2 Define the Sensors

rf_rabi = 100 #Mrad/s
red_laser = { states :(0,1), rabi_frequency :2*np.pi*5} #fields are stored as␣
→˓dictioniaries
blue_laser = { states :(1,2), rabi_frequency :2*np.pi*7, detuning : 0}
LO_ss = { states :(2,3), rabi_frequency :rf_rabi, detuning :0}

RydbergTargetState = [150, 2, 2.5, 0.5] #states labeled n, l, j, m_j
RydbergExcitedState = [149, 3, 3.5, 0.5]

atom = "Rb85"
RbSensor_ss = rq.Cell(atom, *rq.D2_states(atom), RydbergTargetState,␣
→˓RydbergExcitedState,

gamma_transit=2*np.pi*1, cell_length = 0.01)
RbSensor_time = rq.Cell(atom, *rq.D2_states(atom), RydbergTargetState,␣
→˓RydbergExcitedState,

gamma_transit=2*np.pi*1, cell_length = 0.01)
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state1 = RbSensor_time.states_list()[2]
state2 = RbSensor_time.states_list()[3]
print("1: ", state1)
print("2: ", state1)
dipoleMoment = RbSensor_time.atom.getDipoleMatrixElement(*state1,*state2, 0)

field = rf_rabi/rq.scale_dipole(dipoleMoment)

print("applied field, V/m:", field) #V/m
print("Rabi frequency, Mrad/s: ", field*rq.scale_dipole(dipoleMoment))

1: [150, 2, 2.5, 0.5]
2: [150, 2, 2.5, 0.5]
applied field, V/m: 0.08558532725336343
Rabi frequency, Mrad/s: 100.0

def sig_and_LO( delta, beta):
def fun(t):

return (1+beta*np.sin(delta*t))
return fun

rf_freq = RbSensor_time.atom.getTransitionFrequency(*RydbergTargetState[:3],
→˓*RydbergExcitedState[:3])*1E-6
rf_freq #MHz

658.5872652398125

10.3 Observe a heterodyne beat between the Signal and LO.

10.3.1 Define the RF LO and signal

sampleNum = 200
endTime = 10 # microseconds
rf = sig_and_LO( 5, .1)

10.3.2 Solve without Doppler averaging

Observe the beat between signal and LO fields.

red_laser = { states :(0,1), rabi_frequency :2*np.pi*5, detuning :0}
blue_laser = { states :(1,2), rabi_frequency :2*np.pi*7, detuning : 0}
rf = { states :(2,3), "rabi_frequency": rf_rabi, detuning : 0, time_dependence :␣
→˓sig_and_LO( 2*np.pi, .05)}

RbSensor_time.add_couplings(blue_laser, red_laser, rf)

%%time
#Solve Without any doppler broadening

time_sol = rq.solve_time(RbSensor_time, endTime, sampleNum, atol=1e-6, rtol=1e-6)

CPU times: total: 172 ms
Wall time: 191 ms
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transmission = time_sol.get_transmission_coef()

C:UsersDavidsrcRydiqulesrcrydiqulesensor_solution.py:223: UserWarning: At␣
→˓least one solution has optical depth greater than 1. Integrated results␣
→˓are likely invalid.
warnings.warn(( At least one solution has optical depth

fig, ax = plt.subplots()
ax.plot(time_sol.t, transmission)
ax.set_xlabel("time (us)")
ax.set_ylabel( transmission )
ax.set_title("Doppler-Free Solution")

Text(0.5, 1.0, Doppler-Free Solution )

10.3.3 Solve with Doppler averaging

Doppler averaged results require larger Rabi frequencies to observe similar sized signals.

red_laser = { states :(0,1), rabi_frequency :2*np.pi*5, detuning :0, kvec :␣
→˓500*(2*np.pi)*np.array([1,0,0])}
blue_laser = { states :(1,2), rabi_frequency :2*np.pi*7, detuning : 0, kvec :␣
→˓308*(2*np.pi)*np.array([-1,0,0])}
#red_laser = { states :(0,1), rabi_frequency :2*np.pi*1.0, detuning :0, kvec :␣
→˓3*(2*np.pi)*np.array([1,0,0])}
#blue_laser = { states :(1,2), rabi_frequency :2*np.pi*2.0, detuning : 0, kvec :␣
→˓1*(2*np.pi)*np.array([-1,0,0])}
rf = { states :(2,3), "rabi_frequency":rf_rabi, detuning : 0, time_dependence :␣
→˓sig_and_LO( 2*np.pi, .05)}

(continues on next page)
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(continued from previous page)

RbSensor_time.add_couplings(blue_laser, red_laser, rf)

%%time
#Solve with a doppler peak calculated from physical system properties
sampleNum = 200
endTime = 10
time_sol_doppler = rq.solve_time(RbSensor_time, endTime, sampleNum, doppler=True,␣
→˓rtol = 1e-6, atol = 1e-6)

CPU times: total: 3min 11s
Wall time: 1min 38s

transmission_doppler = time_sol_doppler.get_transmission_coef()

fig, ax = plt.subplots()
ax.plot(time_sol_doppler.t, transmission_doppler)
ax.set_xlabel("time (us)")
ax.set_ylabel( transmission )
ax.set_title("Doppler Solution")

Text(0.5, 1.0, Doppler Solution )
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10.3.4 Solve with smaller Doppler Width

We can artificially reduce the amount of Doppler broadening. In this case, the default meshing of the velocity classes
should be overridden to avoid excessive calculations.

red_laser = { states :(0,1), rabi_frequency :2*np.pi*1.0, detuning :0, kvec :␣
→˓1*(2*np.pi)*np.array([1,0,0])}
blue_laser = { states :(1,2), rabi_frequency :2*np.pi*2.0, detuning : 0, kvec :␣
→˓0.6*(2*np.pi)*np.array([-1,0,0])}
rf = { states :(2,3), "rabi_frequency":rf_rabi, detuning : 0, time_dependence :␣
→˓sig_and_LO( 2*np.pi, .05)}

RbSensor_time.add_couplings(blue_laser, red_laser, rf)

%%time
# Solve in the time domain with a 1MHz wide Doppler broadening
time_sol_doppler_narrow = rq.solve_time(RbSensor_time, endTime, sampleNum,

doppler=True,
doppler_mesh_method={ method : uniform ,

→˓ width_doppler :2.5, n_uniform :201},
rtol = 1e-6, atol = 1e-6)

CPU times: total: 1.03 s
Wall time: 518 ms

transmission_doppler_narrow = time_sol_doppler_narrow.get_transmission_coef()

C:UsersDavidsrcRydiqulesrcrydiqulesensor_solution.py:223: UserWarning: At␣
→˓least one solution has optical depth greater than 1. Integrated results␣
→˓are likely invalid.
warnings.warn(( At least one solution has optical depth

fig, ax = plt.subplots()
ax.plot(time_sol_doppler_narrow.t, transmission_doppler_narrow)
ax.set_xlabel("time (us)")
ax.set_ylabel( transmission )
ax.set_title("Small Doppler Solution")

Text(0.5, 1.0, Small Doppler Solution )
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10.3.5 Compare the size of the beat signals

Here we ignore the starting transient, and normalize the beat signal. As the Doppler broadening is increased, the size
of the beat is reduced (for the same optical depth).

def normalize_trace(trace,expand=1e2):
ave = trace[100:].mean()
return (trace - ave)/ave*expand

fig, ax = plt.subplots()

ax.plot(time_sol.t, normalize_trace(transmission), label= Doppler-Free )
ax.plot(time_sol_doppler.t, normalize_trace(transmission_doppler,1e3), label=
→˓ Doppler broadened (x1000) )
ax.plot(time_sol_doppler_narrow.t, normalize_trace(transmission_doppler_narrow),␣
→˓label= Narrow doppler width )
ax.set_xlim((1,10))
ax.set_xlabel("time (us)")
ax.set_ylabel( transmission (%) )
ax.legend()

<matplotlib.legend.Legend at 0x2cf4a780490>
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CHAPTER

ELEVEN

RF HETERODYNE EXAMPLE

For a more thorough introduction to the core functionality of rydiqule, it may be helpful to look at the
Introduction_to_Rydiqule.ipynb notebook before this one.

This notebook demonstrates two-tone detection using a Rydberg sensor in the time domain. An RF local oscillator
(LO) and signal (sig) are imposed on the Rydberg sensor. This is useful for RF phase detection, and can be used to
linearize the detection, as shown below. The main results of this example are:

1. we show that the time solver and steady-state solver approximately agree.

2. we plot an example of a time response due to RF heterodyne.

3. we find the optimum detuning of the Rydberg laser for RF heterodyne, for a given value of LO power.

4. we plot the linear dynamic of the RF heterodyning scheme, and show that it is limited by the LO power on the
high end. The result is limited by the solver tolerance on the low end.

import datetime

##***LAST UPDATE***##
now = datetime.datetime.now()
print(now)

2023-10-10 16:29:39.706585

11.1 Imports

import numpy as np
import rydiqule as rq
import matplotlib.pyplot as plt
from tqdm import tqdm

%load_ext autoreload
%autoreload 2

11.2 Comparing the steady-state and time solver results

This example uses a Cell object, which inherits Sensor. The Cell’s purpose is to attach the bare pyhiscs cal-
culations of a Sensor to a real physical atom (Rubidium-85) by default. This allows for specification of quantum
numbers for states, meaning rydiqule can calculate things like transition frequencies (using ARC Rydberg) with-
out needing to specify them in the object creation. The details will be discussed further down.

NOTE: The time solver runs more slowly for large transition frequencies, since it makes no rotating wave approxi-
mation. Therefore, it is advisable to debug calculations using a transition with a low frequency (ie, very large N). Once
calculations are debugged and running well, they can be re-run with the appropriate n-level. Further, ARC calculates
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dipole moments for the chosen transition. For large n, this calculation is slow, due to the large amount of structure
in the atomic wavefunction. However, ARC caches the results, so it only runs slowly the first time. It will likely take
several minutes to calculate the add_states function, the first time, but then will run quickly.

11.2.1 The steady-state Cell

#states in cell are labeled by [n, l, j, m_j]
#A base sensor object does not support specification of quantum numbers for each␣
→˓level
rydberg_target_state = [150, 2, 2.5, 0.5]
rydberg_excited_state = [149, 3, 3.5, 0.5]

atom = "Rb85"
RbSensor_ss = rq.Cell(atom, *rq.D2_states(atom), rydberg_target_state, rydberg_
→˓excited_state,

gamma_transit=2*np.pi*1, cell_length = 0.01)

Define Transitions

Transitions are defined as dictionaries in a Cell in the same way as they are in a bas Sensor. For the steady-state
case, nothing changes. For this example, will observer the response of the system over a series of 200 blue laser
detunings.

rf_rabi = 25 #Mrad/s
n_det_ss = 200
detunings_ss = np.linspace(-150, 150, n_det_ss)

red_laser = { states :(0,1), rabi_frequency :2*np.pi*0.6, detuning :0}
blue_laser = { states :(1,2), rabi_frequency :2*np.pi*1.0, detuning :detunings_
→˓ss}
local_oscillator_ss = { states :(2,3), rabi_frequency :rf_rabi, detuning :0}

RbSensor_ss.add_couplings(red_laser, blue_laser, local_oscillator_ss)

Solve the steady state system

We solve a Cell in exaclty the same way we solve a Sensor object.

ss_solution = rq.solve_steady_state(RbSensor_ss)
print(ss_solution.rho.shape)

(200, 15)

11.2.2 The time solver Cell

We want to use the same decoherence values

rydberg_target_state = [150, 2, 2.5, 0.5]
rydberg_excited_state = [149, 3, 3.5, 0.5]

RbSensor_time = rq.Cell(atom, *rq.D2_states(atom), rydberg_target_state, rydberg_
→˓excited_state,

gamma_transit=2*np.pi*1, cell_length = 0.01)
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Define Couplings

[n,l,j,m] = RbSensor_ss.states_list()[2]
[n2, l2, j2, m2] = RbSensor_ss.states_list()[3]
rf_freq = RbSensor_ss.atom.getTransitionFrequency(n2,l2,j2,n,l,j)*1E-6
def rf_carrier(t):

return np.cos(2*np.pi*rf_freq*t)#extra factor of 2 to account for no RWA.

n_det = 20
detunings = np.linspace(-75, 75, n_det)

red_laser = { states :(0,1), rabi_frequency :2*np.pi*0.6, detuning :0}
blue_laser = { states :(1,2), rabi_frequency :2*np.pi*1.0, detuning :detunings}
rf_transition = { states :(2,3), rabi_frequency :rf_rabi, time_dependence : rf_
→˓carrier }

RbSensor_time.add_couplings(red_laser, blue_laser, rf_transition)

Defining the rf field

The time_dependence argument s expected to be a python function of a single variable (time in 𝜇𝑠) that returns
the field at that time. To match our steady state solution, which had a detuning of 0, we will explicitly define a
single-tone field as a function of time that is resonant with our rf transition.

Solve in the time domain

Internally, the time solver will loop over all detuning values and output the full result. You can use the verbose
flag to print its progress to stdout

%%time
end_time = 10 #microseconds
sample_num = 10

time_solution = rq.solve_time(RbSensor_time, end_time, sample_num, atol=1e-6,␣
→˓rtol=1e-6)

CPU times: total: 9.98 s
Wall time: 15.7 s

RbSensor_time.couplings.edges[2,3]

{ rabi_frequency : 25,
transition_frequency : 4138.025828450375,
phase : 0,
kvec : (0, 0, 0),
time_dependence : <function __main__.rf_carrier(t)>,
dipole_moment : 14533.336151288706,
label : (2,3) }
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11.2.3 Comparing results

Now, with results for both steady state and time simulations, we can compare them and see that they match. Note
that because the time solution has an extra dimension, we only get the last ([:,-1]) element, since this is effectively
the steady-state solution (assuming transient behavior has been damped out by 10 𝜇s). Here we also use a function
to get the transmission coefficient from the solution quickly by extracting the proper density matrix elements.

time_solution.get_transmission_coef().shape

(20, 10)

#Modify to include convenience functions and get physical parameters.

fig, ax = plt.subplots()
ax.plot(detunings_ss, ss_solution.get_transmission_coef(), label="Steady-state␣
→˓solve")
ax.plot(detunings, time_solution.get_transmission_coef()[:,-1], o , label="Time␣
→˓solve")
ax.set_xlabel("Rydberg Laser Detuning (MHz)")
ax.set_ylabel("Probe Transmission")
ax.legend();
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11.3 Observe a heterodyne beat between the Signal and LO.

The goal of this section is to see the beating behavior in time between the signal and rf local oscillator. This will help
see exactly how to observe behavior in the time domain with rydiqule. It will look a lot like other time solves, but we
will look at the solution in a different way.

11.3.1 Define the RF LO and signal

Just like before, we need a function of time to input into the time solver. This time, instead of just an rf carrier signal,
we will define a function that adds a local oscillator of frequency 𝜔0 with an “incoming” rf signal of frequency 𝜔0+𝛿.
We will also define the time function as the return of another function, which will allow us to make changes to the
function quickly if we want to experiment a little.

def sig_and_LO(omega_0, delta, beta):
def fun(t):

return np.sin(omega_0*t)+beta*np.sin((omega_0+delta)*t)
return fun

omega_0 = 2*np.pi*rf_freq
delta = 5
beta = 0.05

11.3.2 The Sensor

We will use the same RbSensor_time sensor as before, but change the blue laser to be just a single value. This
highlights an important aspect of Sensor. At present, it does not support multiple fields coupling the same pair of
levels, but will override an old one with a new one when add_coupling() is called.

red_laser = { states :(0,1), rabi_frequency :2*np.pi*0.6, detuning :0}
blue_laser = { states :(1,2), rabi_frequency :6.0, detuning : 0}
rf_transition = { states :(2,3), rabi_frequency :rf_rabi, time_dependence : sig_
→˓and_LO(omega_0, delta, beta )}
RbSensor_time.add_couplings(red_laser,blue_laser, rf_transition)

11.3.3 Inital conditions

If the init_cond argument is not supplied to rq.solve_time, it will calculate the inital condition based on the
steady-state solution of the supplied sensor without any of the time-dependant fields. Since we define our incoming
field and LO in a single function, we will likely end up with a sizeable transient if we use this approach. This is now a
great opportunity to demonstrate how to supply an inital condition manually. We calculate our inital condition using
the solution to the steady-state sensor we defined above. Hopefully, this allows us to see the beat oscillation around
the steady-state solution without a large transient from introducing our LO and rf field at the same time.

Solving is done the same way as before, this time solving for 250 points in 10 microseconds

RbSensor_ss.add_couplings(blue_laser)
sol_init = rq.solve_steady_state(RbSensor_ss)

sample_num=250
end_time = 10

time_sol_beat = rq.solve_time(RbSensor_time, end_time, sample_num, init_cond=sol_
→˓init.rho)

print(time_sol_beat.rho.shape)
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(250, 15)

11.3.4 Plotting the beat

We now use the get_transmission_coef() function again to extract the transmission from the (250,
15)-shaped solution to get a 250 element array we can plot against time. We can see that the system quickly settles
into the expected beat frequency of 1 MHZ

fig, ax = plt.subplots()
transmission = time_sol_beat.rho[:,3]
ax.plot(time_sol_beat.t, time_sol_beat.get_transmission_coef())
ax.set_xlabel("time (us)");
ax.set_ylabel( transmission );

We do have a bit of transient behavior at the start, but we can clearly see the beat expected bead frequency of 5Mrad/s
≈ 800kHz.

11.4 RF Heterodyne in the Rotating Wave Approximation

We move to a rotating frame by specifying an rf detuning, and writing the coupling in the complex rotating frame.
This transformation will greatly speed up the time integration.

def sig_LO_RWA(det, beta):
def fun(t):

return 1+beta*np.exp(1j*det*t)
return fun

red_laser = { states :(0,1), rabi_frequency :2*np.pi*0.6, detuning :0}

(continues on next page)
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(continued from previous page)

blue_laser = { states :(1,2), rabi_frequency :6.0, detuning : 0}
rf_transition = { states :(2,3), rabi_frequency :rf_rabi, detuning :0, time_
→˓dependence : sig_LO_RWA(delta, beta )}
RbSensor_time.add_couplings(red_laser, blue_laser, rf_transition)

sol_init = rq.solve_steady_state(RbSensor_ss)

sample_num=250
end_time = 10
time_sol_beat = rq.solve_time(RbSensor_time, end_time, sample_num)

fig, ax = plt.subplots()
ax.plot(time_sol_beat.t, time_sol_beat.get_transmission_coef())
ax.set_xlabel("time (us)");
ax.set_ylabel( transmission );

c:usersnaqsldocumentsgithubrydiqulesrcrydiqulesensor_solution.py:223:␣
→˓UserWarning: At least one solution has optical depth greater than 1.␣
→˓Integrated results are likely invalid.
warnings.warn(( At least one solution has optical depth
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11.5 Find the optimum laser detuning with LO

We again use the same sensor to look at the sensitivity of the sensor as a function of blue laser detuning.

11.5.1 Set up and solve Sensor

num_dets = 75
detuning_list = np.linspace(-40,40,num_dets)
pk_to_pk_result = np.zeros(num_dets)
rf = sig_and_LO(2*np.pi*rf_freq, 5, 0.01)

sample_num = 300
end_time = 3
blue_laser = { states :(1,2), rabi_frequency :6.0, detuning : detuning_list}
rf_transition = { states :(2,3), rabi_frequency :rf_rabi, time_dependence : sig_
→˓and_LO(rf_freq*2*np.pi, 2*np.pi, .05 )}
RbSensor_time.add_couplings(blue_laser, rf_transition) #this replaces the old␣
→˓coupling

time_sol = rq.solve_time(RbSensor_time, end_time, sample_num)

susceptibility = time_sol.rho[:,100:,3]
print(susceptibility.shape)
ptp_result = np.ptp(susceptibility, axis=-1)

(75, 200)

11.5.2 Plotting responsivity versus LO detuning

fig, ax = plt.subplots()
ax.plot(detuning_list, ptp_result, o- )
ax.set_ylabel("responsivity (a.u)")
ax.set_xlabel("Rydberg laser detuning (Mrad/s)")

Text(0.5, 0, Rydberg laser detuning (Mrad/s) )
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This plot shows that, for maximum responsivity, the Rydberg (or probe) laser must be tuned to the side of an
Autler-Townes peak, for maximum sensitivity

11.6 Test the Linear Dynamic Range

Example testing the linear dynamic range in Heterodyne

11.6.1 Setting the laser parameters

We will set the blue laser detuning to -8 MRad/s, which was roughly the optimal value from the plot above

blue_laser = { states :(1,2), rabi_frequency :6.0, detuning : -8}
RbSensor_time.add_couplings(blue_laser)

11.6.2 Solve parameters

With the detuning set, we can set up everything we need for our scan, namely the solver parameters and list of
amplitudes.

num_Amps = 50
amp_list = np.logspace(-6,0.2,num_Amps)
sample_num = 300
end_time = 3
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11.6.3 Running the loop

Now all that is left is get the value we want at each amplitude using a good old python for loop. This could be done
with something like a map() function depending on your comfort level with python, but we will be explicit here.

pk_to_pk_result = np.zeros(num_Amps)

for idx, amp in enumerate(tqdm(amp_list)):
#define and solve for rf input

rf = sig_and_LO(2*np.pi*rf_freq, 5, amp)
rf_transition = { states :(2,3), rabi_frequency :rf_rabi, detuning :1, time_

→˓dependence : sig_LO_RWA(1, amp)}
RbSensor_time.add_couplings(rf_transition)
time_sol = rq.solve_time(RbSensor_time, end_time, sample_num, init_cond=sol_

→˓init.rho, atol=1e-7, rtol=1e-7)

#calculate responsivity
pk_to_pk_signal = np.ptp(time_sol.rho[100:,3])
pk_to_pk_result[idx] = pk_to_pk_signal

100
→˓%|████████████████████████████████████████████████████████████████████████████████████████████████████████████|␣
→˓50/50 [00:01<00:00, 48.75it/s]

11.6.4 Plotting the dynamic range

fig, ax = plt.subplots()
ax.plot(amp_list, pk_to_pk_result, o- )
ax.set_ylabel("responsivity (a.u)")
ax.set_xlabel("Probe relative amplitude")
ax.set_xscale( log )
ax.set_yscale( log )
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